Convergence absolueEn mathématiques, une série numérique réelle ou complexe converge absolument si, par définition, la série des valeurs absolues (ou des modules) est convergente. Cette définition peut être étendue aux séries à valeurs dans un espace vectoriel normé et complet, soit un espace de Banach. Dans tous ces contextes, cette condition est suffisante pour assurer la convergence de la série elle-même. Par analogie, l'intégrale d'une fonction à valeurs réelles ou complexes converge absolument si, par définition, l'intégrale de la valeur absolue (ou du module) de la fonction est convergente (fonction dans L1). La convergence absolue des séries ou des intégrales est étroitement liée à la sommabilité (des familles ou des fonctions) : elle implique des propriétés plus fortes que la simple convergence. Série numérique absolument convergenteUne série à termes réels ou complexes converge absolument quand la série de terme général converge. Dans ce cas, la série converge elle aussi et l'inégalité triangulaire se généralise en Si la série est convergente, mais non absolument convergente, elle est dite semi-convergente.
Comportement des séries à termes réelsDans le cas où on a affaire à une série de réels, le théorème précédent possède une démonstration élémentaire, qui apporte des informations supplémentaires sur les comportements possibles. Si les termes de la série sont des réels, on peut séparer les termes positifs et négatifs. Il faut considérer pour cela les termes partie positive et partie négative du terme Ces deux termes sont positifs, l'un est nul, et l'autre égal à la valeur absolue de . De sorte que Les séries et étant à termes positifs, leurs suites des sommes partielles sont croissantes ; elles convergent ou bien tendent vers l'infini. Convergence absolue et semi-convergence peuvent être formulées à l'aide de ces deux séries.
La propriété « absolue convergence implique convergence » peut ensuite être étendue aux séries à valeurs complexes en séparant de la même façon parties réelle et imaginaire. Propriétés des séries absolument convergentesSi une série à termes réels ou complexes est absolument convergente, elle jouit des propriétés particulières suivantes, valables pour les sommes finies, mais généralement fausses pour les sommes infinies :
Une autre façon d'obtenir ces propriétés pour des sommes infinies est de considérer la notion de famille sommable, très voisine de la propriété d'absolue convergence pour les séries numériques. Extension aux séries à valeurs vectoriellesConsidérons le cadre plus vaste d'un espace vectoriel normé E. Une série à termes vectoriels converge absolument lorsque la série de terme général converge. Sans autre précision, rien ne permet d'affirmer qu'une limite existe dans E[1]. On peut seulement affirmer que si cette limite existe alors sa norme est majorée par . Dans un espace de Banach, la convergence absolue d'une série implique sa convergence. Il s'agit en fait d'une équivalence[2] : si E est un espace vectoriel normé dans lequel toute série absolument convergente est convergente, alors E est complet. Intégrale absolument convergenteDe même, une intégrale : converge absolument si l'intégrale de sa valeur absolue correspondante est finie : Notes et références
Articles connexes |
Portal di Ensiklopedia Dunia