Catégorie de FukayaEn topologie symplectique, un domaine actif de la recherche mathématique, la catégorie de Fukaya d'une variété symplectique est la catégorie dont les objets sont les sous-variétés lagrangiennes de , et les morphismes sont les groupes d'homologie de Floer : . Pour décrire sa structure plus fine, il faut recourir au langage des quasi-catégories. Dans le cadre de cette théorie, la catégorie de Fukaya est une A∞-catégorie. Nommées d'après leur découvreur, Kenji Fukaya , qui a introduit le concept d'algèbre dans le contexte de l'homologie de Morse, ces catégories se présentent sous diverses formes. Les catégories de Fukaya étant des A∞-catégories, elles possèdent des catégories dérivées associées, qui font l'objet de la célèbre conjecture de symétrie miroir homologique de Maxime Kontsevitch. Cette conjecture a été confirmée par le calcul dans un certain nombre d'exemples relativement simples. Références
|
Portal di Ensiklopedia Dunia