Sobre el número de primos menores que una magnitud dada"Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse" (traducción al español: "Sobre el número de primos menores que una magnitud dada") es un artículo fundamental de 9 páginas de Bernhard Riemann publicado en la edición de noviembre de 1859 de la Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin. Visión generalEste trabajo estudia la función de contar primos utilizando métodos analíticos. Aunque es el único trabajo que publicó Riemann sobre teoría de números, contiene ideas que han influido en miles de investigadores de finales del siglo XIX y hasta nuestros días. El trabajo consiste principalmente en definiciones, argumentos heurísticos, esbozos de pruebas y la aplicación de potentes métodos analíticos; todos ellos se han convertido en conceptos y herramientas esenciales de la teoría analítica de números moderna. Entre las nuevas definiciones, ideas y notaciones introducidas:
Entre las pruebas y esbozos de pruebas:
Entre las conjeturas hechas:
Es decir,
(Estaba investigando sobre una versión de la función zeta, modificada para que sus raíces fueran reales en lugar de estar en la línea crítica). Nuevos métodos y nuevas técnicas utilizadas en la teoría de números:
Riemann también analizó la relación entre ζ(s) y la distribución de los números primos, utilizando la función J(x) esencialmente como una medida para la integración de Stieltjes. A continuación obtuvo el resultado principal del trabajo, una fórmula para J(x), comparándola con ln(ζ(s)). Posteriormente, Riemann halló una fórmula para la función de contador de primos π(x) (que denomina F(x)). Observa asimismo que su ecuación explica el hecho de que π(x) crezca más lentamente que la integral logarítmica, como habían descubierto Carl Friedrich Gauss y Carl Wolfgang Benjamin Goldschmidt. El artículo contiene algunas peculiaridades para los lectores modernos, como el uso de Π(s − 1) en lugar de Γ(s), escribiendo tt en lugar de t2, y utilizar los límites de ∞ a ∞ como para indicar una integral de contorno. Referencias
Enlaces externos
|