Número pseudoprimo elíptico

En teoría de números, un número pseudoprimo n se denomina pseudoprimo elíptico[1]​ para (EP), donde E es una curva elíptica definida sobre el cuerpo de los números racionales con un orden asociado a la multiplicación compleja sobre , teniendo la ecuación:

y2 = x3 + ax + b

con a y b números enteros; siendo P un punto en E; y n un número natural tal que el símbolo de Jacobi (−d | n ) = −1, si (n + 1)P ≡ 0 (mod n).

Número de pseudoprimos

El número de pseudoprimos elípticos menores que X está acotado por arriba para un X grande, por:

Referencias

  1. Paulo Ribenboim (2012). The New Book of Prime Number Records. Springer Science & Business Media. pp. 134 de 541. ISBN 9781461207597. Consultado el 5 de octubre de 2022. 

Bibliografía

Enlaces externos

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia