Openshaw (1993) and Hewitson et al. (1994) started investigating the applications of the a-spatial/classic NNs to geographic phenomena.[4][5] They observed that a-spatial/classic NNs outperform the other extensively applied a-spatial/classic statistical models (e.g. regression models, clustering algorithms, maximum likelihood classifications) in geography, especially when there exist non-linear relations between the geo-spatial datasets' variables.[4][5] Thereafter, Openshaw (1998) also compared these a-spatial/classic NNs with other modern and original a-spatial statistical models at that time (i.e. fuzzy logic models, genetic algorithm models); he concluded that the a-spatial/classic NNs are statistically competitive.[6] Thereafter scientists developed several categories of SNNs – see below.
There exist several categories of methods/approaches for designing and applying SNNs.
One-Size-Fits-all (OSFA) spatial neural networks, use the OSFA method/approach for globally computing the spatial weights and designing a spatial structure from the originally a-spatial/classic neural networks.[2]
Spatial Variability Aware Neural Networks (SVANNs) use an enhanced OSFA method/approach that locally recomputes the spatial weights and redesigns the spatial structure of the originally a-spatial/classic NNs, at each geo-location of the (statistical) individuals/units' attributes' values.[3] They generally outperform the OSFA spatial neural networks, but they do not consistently handle the spatial heterogeneity at multiple scales.[10]
Geographically Weighted Neural Networks (GWNNs) are similar to the SVANNs but they use the so-called Geographically Weighted Model (GWM) method/approach by Lu et al. (2023), so to locally recompute the spatial weights and redesign the spatial structure of the originally a-spatial/classic neural networks.[1][9] Like the SVANNs, they do not consistently handle spatial heterogeneity at multiple scales.[1]
^ abGupta J, Molnar C, Xie Y, Knight J, Shekhar S (2021). "Spatial variability aware deep neural networks (SVANN): a general approach". ACM Transactions on Intelligent Systems and Technology. 12 (6): 1–21. doi:10.1145/3466688. S2CID244786699.
^ abOpenshaw S (1993). "Modelling spatial interaction using a neural net". In Fischer M, Nijkamp P (eds.). Geographic information systems, spatial modelling and policy evaluation. Berlin: Springer. pp. 147–164. doi:10.1007/978-3-642-77500-0_10. ISBN978-3-642-77500-0.
^Podlipnov V, Firsov N, Ivliev N, Mashkov S, Ishkin P, Skidanov R, Nikonorov A (2023). "Spectral-spatial neural network classification of hyperspectral vegetation images". IOP conference series: earth and environmental science. Vol. 1138. doi:10.1088/1755-1315/1138/1/012040.
^Lin R, Ou C, Tseng K, Bowen D, Yung K, Ip W (2021). "The Spatial neural network model with disruptive technology for property appraisal in real estate industry". Technological Forecasting and Social Change. 177: 121067. doi:10.1016/j.techfore.2021.121067.