Power of a point

Geometric meaning

In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826.[1]

Specifically, the power of a point with respect to a circle with center and radius is defined by

If is outside the circle, then ,
if is on the circle, then and
if is inside the circle, then .

Due to the Pythagorean theorem the number has the simple geometric meanings shown in the diagram: For a point outside the circle is the squared tangential distance of point to the circle .

Points with equal power, isolines of , are circles concentric to circle .

Steiner used the power of a point for proofs of several statements on circles, for example:

  • Determination of a circle, that intersects four circles by the same angle.[2]
  • Solving the Problem of Apollonius
  • Construction of the Malfatti circles:[3] For a given triangle determine three circles, which touch each other and two sides of the triangle each.
  • Spherical version of Malfatti's problem:[4] The triangle is a spherical one.

Essential tools for investigations on circles are the radical axis of two circles and the radical center of three circles.

The power diagram of a set of circles divides the plane into regions within which the circle minimizing the power is constant.

More generally, French mathematician Edmond Laguerre defined the power of a point with respect to any algebraic curve in a similar way.

Geometric properties

Besides the properties mentioned in the lead there are further properties:

Orthogonal circle

Orthogonal circle (green)

For any point outside of the circle there are two tangent points on circle , which have equal distance to . Hence the circle with center through passes , too, and intersects orthogonal:

  • The circle with center and radius intersects circle orthogonal.
Angle between two circles

If the radius of the circle centered at is different from one gets the angle of intersection between the two circles applying the Law of cosines (see the diagram):

( and are normals to the circle tangents.)

If lies inside the blue circle, then and is always different from .

If the angle is given, then one gets the radius by solving the quadratic equation

.

Intersecting secants theorem, intersecting chords theorem

Secant-, chord-theorem

For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant:

  • Intersecting secants theorem: For a point outside a circle and the intersection points of a secant line with the following statement is true: , hence the product is independent of line . If is tangent then and the statement is the tangent-secant theorem.
  • Intersecting chords theorem: For a point inside a circle and the intersection points of a secant line with the following statement is true: , hence the product is independent of line .

Radical axis

Let be a point and two non concentric circles with centers and radii . Point has the power with respect to circle . The set of all points with is a line called radical axis. It contains possible common points of the circles and is perpendicular to line .

Secants theorem, chords theorem: common proof

Secant-/chord-theorem: proof

Both theorems, including the tangent-secant theorem, can be proven uniformly:

Let be a point, a circle with the origin as its center and an arbitrary unit vector. The parameters of possible common points of line (through ) and circle can be determined by inserting the parametric equation into the circle's equation:

From Vieta's theorem one finds:

. (independent of )

is the power of with respect to circle .

Because of one gets the following statement for the points :

, if is outside the circle,
, if is inside the circle ( have different signs !).

In case of line is a tangent and the square of the tangential distance of point to circle .

Similarity points, common power of two circles

Similarity points

Similarity points are an essential tool for Steiner's investigations on circles.[5]

Given two circles

A homothety (similarity) , that maps onto stretches (jolts) radius to and has its center on the line , because . If center is between the scale factor is . In the other case . In any case:

.

Inserting and solving for yields:

.
Similarity points of two circles: various cases

Point is called the exterior similarity point and is called the inner similarity point.

In case of one gets .
In case of : is the point at infinity of line and is the center of .
In case of the circles touch each other at point inside (both circles on the same side of the common tangent line).
In case of the circles touch each other at point outside (both circles on different sides of the common tangent line).

Further more:

  • If the circles lie disjoint (the discs have no points in common), the outside common tangents meet at and the inner ones at .
  • If one circle is contained within the other, the points lie within both circles.
  • The pairs are projective harmonic conjugate: Their cross ratio is .

Monge's theorem states: The outer similarity points of three disjoint circles lie on a line.

Common power of two circles

Similarity points of two circles and their common power

Let be two circles, their outer similarity point and a line through , which meets the two circles at four points . From the defining property of point one gets

and from the secant theorem (see above) the two equations

Combining these three equations yields: Hence: (independent of line  !). The analog statement for the inner similarity point is true, too.

The invariants are called by Steiner common power of the two circles (gemeinschaftliche Potenz der beiden Kreise bezüglich ihrer Ähnlichkeitspunkte).[6]

The pairs and of points are antihomologous points. The pairs and are homologous.[7][8]

Determination of a circle that is tangent to two circles

Common power of two circles: application
Circles tangent to two circles

For a second secant through :

From the secant theorem one gets:

The four points lie on a circle.

And analogously:

The four points lie on a circle, too.

Because the radical lines of three circles meet at the radical (see: article radical line), one gets:

The secants meet on the radical axis of the given two circles.

Moving the lower secant (see diagram) towards the upper one, the red circle becomes a circle, that is tangent to both given circles. The center of the tangent circle is the intercept of the lines . The secants become tangents at the points . The tangents intercept at the radical line (in the diagram yellow).

Similar considerations generate the second tangent circle, that meets the given circles at the points (see diagram).

All tangent circles to the given circles can be found by varying line .

Positions of the centers
Circles tangent to two circles

If is the center and the radius of the circle, that is tangent to the given circles at the points , then:

Hence: the centers lie on a hyperbola with

foci ,
distance of the vertices[clarification needed] ,
center is the center of ,
linear eccentricity and
[clarification needed].

Considerations on the outside tangent circles lead to the analog result:

If is the center and the radius of the circle, that is tangent to the given circles at the points , then:

The centers lie on the same hyperbola, but on the right branch.

See also Problem of Apollonius.

Power of a point with respect to a sphere

Power with respect to a sphere

The idea of the power of a point with respect to a circle can be extended to a sphere .[9] The secants and chords theorems are true for a sphere, too, and can be proven literally as in the circle case.

Darboux product

The power of a point is a special case of the Darboux product between two circles, which is given by[10]

where A1 and A2 are the centers of the two circles and r1 and r2 are their radii. The power of a point arises in the special case that one of the radii is zero.

If the two circles are orthogonal, the Darboux product vanishes.

If the two circles intersect, then their Darboux product is

where φ is the angle of intersection (see section orthogonal circle).

Laguerre's theorem

Laguerre defined the power of a point P with respect to an algebraic curve of degree n to be the sum of the distances from the point to the intersections of a circle through the point with the curve, divided by the nth power of the diameter d. Laguerre showed that this number is independent of the diameter (Laguerre 1905). In the case when the algebraic curve is a circle this is not quite the same as the power of a point with respect to a circle defined in the rest of this article, but differs from it by a factor of d2.

References

  1. ^ Jakob Steiner: Einige geometrische Betrachtungen, 1826, S. 164
  2. ^ Steiner, p. 163
  3. ^ Steiner, p. 178
  4. ^ Steiner, p. 182
  5. ^ Steiner: p. 170,171
  6. ^ Steiner: p. 175
  7. ^ Michel Chasles, C. H. Schnuse: Die Grundlehren der neuern Geometrie, erster Theil, Verlag Leibrock, Braunschweig, 1856, p. 312
  8. ^ William J. M'Clelland: A Treatise on the Geometry of the Circle and Some Extensions to Conic Sections by the Method of Reciprocation,1891, Verlag: Creative Media Partners, LLC, ISBN 978-0-344-90374-8, p. 121,220
  9. ^ K.P. Grothemeyer: Analytische Geometrie, Sammlung Göschen 65/65A, Berlin 1962, S. 54
  10. ^ Pierre Larochelle, J. Michael McCarthy:Proceedings of the 2020 USCToMM Symposium on Mechanical Systems and Robotics, 2020, Springer-Verlag, ISBN 978-3-030-43929-3, p. 97

Further reading

Read other articles:

For the 2011 album from Tombs, see Path of Totality. 2011 studio album by KornThe Path of TotalityStudio album by KornReleasedDecember 6, 2011 (2011-12-06)[1]RecordedJanuary–September 2011StudioKorn Studios, Los AngelesGenreNu metaldubstepelectronicaLength37:45LabelRoadrunnerProducerJonathan Davis (exec.)SkrillexNoisiaExcisionDownlink12th PlanetFlinchFeed MeKill the NoiseDatsikJim MontiKorn chronology Korn III: Remember Who You Are(2010) The Path of Totality(2011…

Academic or researcher who specialises in the study of the Arabic language and Arabic literature This article is about Western scholars. For the Arab political movement, see Pan-Arabism. For American political connotations of the term, see Arabist (political). French Arabist Louis Massignon in Cairo An Arabist is someone, often but not always from outside the Arab world, who specialises in the study of the Arabic language and culture (usually including Arabic literature). Origins See also: Al An…

العلامة الشيخ العربي التبسي معلومات شخصية الميلاد 1895 متبسة  الوفاة 1957 مالجزائر العاصمة  الإقامة جزائري مواطنة جزائر المذهب الفقهي مالكي العقيدة أهل السنة والجماعة أقرباء محمد الميلي (صهر)[1]  الحياة العملية الحقبة 1895 م - 1957 المدرسة الأم جامعة الزيتونةجامعة الأزه…

Aoi MiyazakiAoi Miyazaki pada perayaan Élan d'or Award tahun 2009Lahir30 November 1985 (umur 38)Tokyo, JepangTahun aktif1989–sekarangTinggi163 m (534 ft 9+1⁄2 in)Situs webwww.aoimiyazaki.jp Aoi Miyazaki (宮﨑 あおいcode: ja is deprecated , Miyazaki Aoi, lahir 30 November 1985) adalah aktris asal Jepang. Ia paling dikenal karena perannya dalam film Nana dan Virgin Snow. Filmografi Film Tahun Judul Peran Sutradara(s) Catatan Ref. 1999 Ano Natsu no Hi Tama Kob…

Jalan Tol Asia 140Informasi rutePanjang:330 km (205,1 mi)Persimpangan besarUjung Barat:Butterworth, PenangUjung Timur:Pasir Puteh, KelantanLetakNegara: MalaysiaSistem jalan bebas hambatanJaringan Jalan Tol Asia Asian Highway 140 AH 140 adalah bagian dari Jaringan Jalan Asia yang hanya dilalui di Malaysia, melewati Butterworth-Kulim Expressway dan Malaysia Federal Route 4. lbsJaringan Jalan AsiaSeluruh benua AH1 AH2 AH3 AH4 AH5 AH6 AH7 AH8 Asia Tenggara AH11 AH12 AH13 AH14 AH15 AH1…

Border support operations by US Armed Forces Operation Faithful PatriotThe Northern Command Battle Staff meet in a planning session with U.S. Customs and Border Protection officials in Colorado Springs, Colorado, on October 28, 2018.TypeBorder control, Homeland securityLocationUnited StatesObjectiveHardening of the Mexico–United States border to prevent a potential border crossing of migrants from Central America.DateOctober 26, 2018 (2018-10-26) – present This article is …

Cet article est une ébauche concernant une localité hondurienne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. San Pedro de Copán Administration Pays Honduras Département Copán Maire Sergio Lemus Démographie Population 63 829 hab. (2015) Densité 215 hab./km2 Géographie Coordonnées 14° 37′ 00″ nord, 88° 52′ 00″ ouest Altitude 836 m Superficie 29&#…

Византийские монетные дворы — монетные дворы, учреждённые и действовавшие в Византийской империи. Кроме основных дворов в Константинополе и других крупных городах, существовало много мелких в провинциях. В большинстве своём такие малые дворы были основаны в VI веке, но…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Dolly, Surabaya – berita · surat kabar · buku · cendekiawan · JSTOR Untuk kegunaan lain, lihat Dolly. Dolly atau Gang Dolly adalah bekas kawasan lokalisasi pelacuran yang terletak di Jalan Kupang Gunung Tim…

دبليو دبليو إي سيرفايفر سيريس المطور ناتسومي الناشر إل إتش كيو الموزع تي إتش كيو  النظام غيم بوي أدفانس  تاریخ الإصدار 2004 نوع اللعبة مصارعة النمط لعبة فيديو جماعية،  ولعبة فيديو فردية  التقييم ESRB:  تعديل مصدري - تعديل   دبليو دبليو إي سيرفايفر سيريس هي لعبة فيدي…

鹿野川ダム クレストゲート更新(2010年撮影) Wikimedia maps を表示鹿野川ダム (愛媛県) 愛媛県地図を表示左岸所在地 愛媛県大洲市肱川町宇和川598-2位置 北緯33度27分01秒 東経132度41分07秒 / 北緯33.45028度 東経132.68528度 / 33.45028; 132.68528座標: 北緯33度27分01秒 東経132度41分07秒 / 北緯33.45028度 東経132.68528度 / 33.45028; 132.68528河川 肱川水系肱川ダム…

مونيكا هيس معلومات شخصية الميلاد 24 مايو 1964 (60 سنة)  مواطنة سويسرا  أقرباء اريكا هس (ابنة عم)  الحياة العملية المهنة متزحلقة  الرياضة التزلج على المنحدرات الثلجية  تعديل مصدري - تعديل   مونيكا هيس هي متزحلقة سويسرية، ولدت في 24 مايو 1964 في Engelberg [الإنجليزية]‏ في…

2019 Slovak presidential election ← 2014 16 March 2019 (first round)30 March 2019 (second round) 2024 → Turnout48.74% (first round) 5.35pp41.80% (second round) 8.67pp   Nominee Zuzana Čaputová Maroš Šefčovič Party PS Independent[a] Popular vote 1,056,582 752,403 Percentage 58.41% 41.59% First round results by district Second round results by district President before election Andrej Kiska Independent Elected President Zuzana Čaputová PS Politics of…

Research institute of the United Nations United Nations Research Institute for Social DevelopmentAbbreviationUNRISDFormation1 August 1963; 60 years ago (1963-08-01)TypeResearch instituteLegal statusActiveHeadquartersGeneva, SwitzerlandHeadDirector Paul LaddParent organizationUnited Nations Economic and Social CouncilWebsitewww.unrisd.org Politics portal UNRISD is based at the United Nations Office at Geneva. The United Nations Research Institute for Social Development (UNRI…

6.1 magnitude earthquake in Yunnan, China 2014 Ludian earthquake.The town of Zhoujiaping after the earthquakeKunming2014 Ludian earthquake (Yunnan)Location of epicenter in YunnanUTC time2014-08-03 08:30:13ISC event605131010USGS-ANSSComCatLocal date3 August 2014Local time16:30:13 CST (UTC+8)Magnitude6.5 ML[1][2][3][4][5]6.1 Mw[6]Depth10.0 km (6.2 mi)Epicenter27°14′42″N 103°25′37″E / 27.245°N 1…

Military operation attacking from air and sea to land Amphibious assault redirects here. For the band Amphibious Assault, see Fallon Bowman. A Crusader tank landing on a beach from a Tank Landing Craft in a 1942 test Part of a series onWarOutline History Prehistoric Ancient Post-classical castles Early modern pike and shot napoleonic Late modern industrial fourth-gen Military Organization Command and control Defense ministry Army Navy Air force Marines Coast guard Space force Reserves Regular / …

Olimpiade Remaja Musim Dingin IIILogo resmiTuan rumahLausanne, SwissMotoStart Now(Mulailah Sekarang)Jumlah negara79Jumlah atlet1.788Jumlah disiplin81 (8 cabor)Upacara pembukaan9 Januari 2020; 4 tahun lalu (2020-01-09)Upacara penutupan22 Januari 2020Dibuka olehSimonetta Sommaruga (Presiden Swiss)Tempat utamaVaudoise ArénaMusim dingin: <  Lillehammer 2016 Gangwon 2024  > Musim panas: <  Buenos Aires 2018 Dakar 2026  > Olimpiade Musim Dingin Remaja 2020 (bahasa…

Biathlonat the XXI Olympic Winter GamesVenueWhistler Olympic ParkDates13–26 FebruaryCompetitors221 from 37 nations← 20062014 → Biathlon at the2010 Winter OlympicsIndividualmenwomenSprintmenwomenPursuitmenwomenMass startmenwomenRelaymenwomenvte The biathlon competition at the 2010 Winter Olympics were held at Whistler Olympic Park in Whistler, British Columbia. The events were held between the 13th and 26 February 2010. The men's individual biathlon was notable f…

Hindu temple in Kottayam district, Kerala Perunna Subrahmanya Swami TempleReligionAffiliationHinduismDistrictKottayamDeitySubramanya SwamyFestivalsPallivetta utsavamLocationLocationPerunnaStateKeralaCountry IndiaSubramanya Swamy Temple, Perunna, Kottayam, KeralaGeographic coordinates9°25′56.5″N 76°32′20.5″E / 9.432361°N 76.539028°E / 9.432361; 76.539028ArchitectureTypeArchitecture of KeralaSpecificationsTemple(s)OneElevation28.21 m (93 ft) Perun…

Artikel ini bukan mengenai Teritip angsa. Angsa teritip Status konservasi Risiko Rendah  (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Anseriformes Famili: Anatidae Subfamili: Anserinae Tribus: Anserini Genus: Branta Spesies: B. leucopsis Nama binomial Branta leucopsis(Bechstein, 1803) Angsa teritip (Branta leucopsis) termasuk dalam genus Branta dari angsa hitam, yang mana meliputi spesies-spesies dengan bulu dan corak dominan hitam, memb…