Multivariate generalization of the gamma function
In mathematics, the multivariate gamma function Γp is a generalization of the gamma function. It is useful in multivariate statistics, appearing in the probability density function of the Wishart and inverse Wishart distributions, and the matrix variate beta distribution.[1]
It has two equivalent definitions. One is given as the following integral over the
positive-definite real matrices:
![{\displaystyle \Gamma _{p}(a)=\int _{S>0}\exp \left(-{\rm {tr}}(S)\right)\,\left|S\right|^{a-{\frac {p+1}{2}}}dS,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3ce2efacd1fddf8a6d871edbc50c80b5b33030a0)
where
denotes the determinant of
. The other one, more useful to obtain a numerical result is:
![{\displaystyle \Gamma _{p}(a)=\pi ^{p(p-1)/4}\prod _{j=1}^{p}\Gamma (a+(1-j)/2).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/844ce1d574788fefcc01f958afa92a15be35573f)
In both definitions,
is a complex number whose real part satisfies
. Note that
reduces to the ordinary gamma function. The second of the above definitions allows to directly obtain the recursive relationships for
:
![{\displaystyle \Gamma _{p}(a)=\pi ^{(p-1)/2}\Gamma (a)\Gamma _{p-1}(a-{\tfrac {1}{2}})=\pi ^{(p-1)/2}\Gamma _{p-1}(a)\Gamma (a+(1-p)/2).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5181e34f8caf40f854243a92b175f340ac33f6f0)
Thus
![{\displaystyle \Gamma _{2}(a)=\pi ^{1/2}\Gamma (a)\Gamma (a-1/2)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ba5fd619360ecdb2169b46f16f66221513e8d4da)
![{\displaystyle \Gamma _{3}(a)=\pi ^{3/2}\Gamma (a)\Gamma (a-1/2)\Gamma (a-1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2143c078c0f097090f6d99fe1880a9c8121aa61e)
and so on.
This can also be extended to non-integer values of
with the expression:
Where G is the Barnes G-function, the indefinite product of the Gamma function.
The function is derived by Anderson[2] from first principles who also cites earlier work by Wishart, Mahalanobis and others.
There also exists a version of the multivariate gamma function which instead of a single complex number takes a
-dimensional vector of complex numbers as its argument. It generalizes the above defined multivariate gamma function insofar as the latter is obtained by a particular choice of multivariate argument of the former.[3]
Derivatives
We may define the multivariate digamma function as
![{\displaystyle \psi _{p}(a)={\frac {\partial \log \Gamma _{p}(a)}{\partial a}}=\sum _{i=1}^{p}\psi (a+(1-i)/2),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eddc4b127fa06c312ae75f989a89b6b5de10eb34)
and the general polygamma function as
![{\displaystyle \psi _{p}^{(n)}(a)={\frac {\partial ^{n}\log \Gamma _{p}(a)}{\partial a^{n}}}=\sum _{i=1}^{p}\psi ^{(n)}(a+(1-i)/2).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/66bf472945d78bc218b4a41b547f8d79fd718981)
Calculation steps
![{\displaystyle \Gamma _{p}(a)=\pi ^{p(p-1)/4}\prod _{j=1}^{p}\Gamma \left(a+{\frac {1-j}{2}}\right),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a494f794a92067af72b2af98e467dbc8d9d5b96)
- it follows that
![{\displaystyle {\frac {\partial \Gamma _{p}(a)}{\partial a}}=\pi ^{p(p-1)/4}\sum _{i=1}^{p}{\frac {\partial \Gamma \left(a+{\frac {1-i}{2}}\right)}{\partial a}}\prod _{j=1,j\neq i}^{p}\Gamma \left(a+{\frac {1-j}{2}}\right).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aa54823ac1e5ecb10ffa7529e3b654a7bb6b891e)
![{\displaystyle {\frac {\partial \Gamma (a+(1-i)/2)}{\partial a}}=\psi (a+(i-1)/2)\Gamma (a+(i-1)/2)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/23c987998cc105a021b36650ab7af97b855543e3)
- it follows that
![{\displaystyle {\begin{aligned}{\frac {\partial \Gamma _{p}(a)}{\partial a}}&=\pi ^{p(p-1)/4}\prod _{j=1}^{p}\Gamma (a+(1-j)/2)\sum _{i=1}^{p}\psi (a+(1-i)/2)\\[4pt]&=\Gamma _{p}(a)\sum _{i=1}^{p}\psi (a+(1-i)/2).\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/53be1f08a21a67f4a4d96fa959255f792b5071d1)
References