Monomial representation
In the mathematical fields of representation theory and group theory, a linear representation (rho) of a group is a monomial representation if there is a finite-index subgroup and a one-dimensional linear representation of , such that is equivalent to the induced representation . Alternatively, one may define it as a representation whose image is in the monomial matrices. Here for example and may be finite groups, so that induced representation has a classical sense. The monomial representation is only a little more complicated than the permutation representation of on the cosets of . It is necessary only to keep track of scalars coming from applied to elements of . DefinitionTo define the monomial representation, we first need to introduce the notion of monomial space. A monomial space is a triple where is a finite-dimensional complex vector space, is a finite set and is a family of one-dimensional subspaces of such that . Now Let be a group, the monomial representation of on is a group homomorphism such that for every element , permutes the 's, this means that induces an action by permutation of on . References
|
Portal di Ensiklopedia Dunia