Kőnig's lemma

Kőnig's 1927 publication

Kőnig's lemma or Kőnig's infinity lemma is a theorem in graph theory due to the Hungarian mathematician Dénes Kőnig who published it in 1927.[1] It gives a sufficient condition for an infinite graph to have an infinitely long path. The computability aspects of this theorem have been thoroughly investigated by researchers in mathematical logic, especially in computability theory. This theorem also has important roles in constructive mathematics and proof theory.

Statement of the lemma

Let be a connected, locally finite, infinite graph. This means that every two vertices can be connected by a finite path, each vertex is adjacent to only finitely many other vertices, and the graph has infinitely many vertices. Then contains a ray: a simple path (a path with no repeated vertices) that starts at one vertex and continues from it through infinitely many vertices.

A useful special case of the lemma is that every infinite tree contains either a vertex of infinite degree or an infinite simple path. If it is locally finite, it meets the conditions of the lemma and has a ray, and if it is not locally finite then it has an infinite-degree vertex.

Construction

The construction of a ray, in a graph that meets the conditions of the lemma, can be performed step by step, maintaining at each step a finite path that can be extended to reach infinitely many vertices (not necessarily all along the same path as each other). To begin this process, start with any single vertex . This vertex can be thought of as a path of length zero, consisting of one vertex and no edges. By the assumptions of the lemma, each of the infinitely many vertices of can be reached by a simple path that starts from .

Next, as long as the current path ends at some vertex , consider the infinitely many vertices that can be reached by simple paths that extend the current path, and for each of these vertices construct a simple path to it that extends the current path. There are infinitely many of these extended paths, each of which connects from to one of its neighbors, but has only finitely many neighbors. Therefore, it follows by a form of the pigeonhole principle that at least one of these neighbors is used as the next step on infinitely many of these extended paths. Let be such a neighbor, and extend the current path by one edge, the edge from to . This extension preserves the property that infinitely many vertices can be reached by simple paths that extend the current path.

Repeating this process for extending the path produces an infinite sequence of finite simple paths, each extending the previous path in the sequence by one more edge. The union of all of these paths is the ray whose existence was promised by the lemma.

Computability aspects

The computability aspects of Kőnig's lemma have been thoroughly investigated. For this purpose it is convenient to state Kőnig's lemma in the form that any infinite finitely branching subtree of has an infinite path. Here denotes the set of natural numbers (thought of as an ordinal number) and the tree whose nodes are all finite sequences of natural numbers, where the parent of a node is obtained by removing the last element from a sequence. Each finite sequence can be identified with a partial function from to itself, and each infinite path can be identified with a total function. This allows for an analysis using the techniques of computability theory.

A subtree of in which each sequence has only finitely many immediate extensions (that is, the tree has finite degree when viewed as a graph) is called finitely branching. Not every infinite subtree of has an infinite path, but Kőnig's lemma shows that any finitely branching infinite subtree must have such a path.

For any subtree of the notation denotes the set of nodes of through which there is an infinite path. Even when is computable the set may not be computable. Whenever a subtree of has an infinite path, the path is computable from , step by step, greedily choosing a successor in at each step. The restriction to ensures that this greedy process cannot get stuck.

There exist non-finitely branching computable subtrees of that have no arithmetical path, and indeed no hyperarithmetical path.[2] However, every computable subtree of with a path must have a path computable from Kleene's O, the canonical complete set. This is because the set is always (for the meaning of this notation, see analytical hierarchy) when is computable.

A finer analysis has been conducted for computably bounded trees. A subtree of is called computably bounded or recursively bounded if there is a computable function from to such that for every sequence in the tree and every natural number , the th element of the sequence is at most . Thus gives a bound for how "wide" the tree is. The following basis theorems apply to infinite, computably bounded, computable subtrees of .

  • Any such tree has a path computable from , the canonical Turing complete set that can decide the halting problem.
  • Any such tree has a path that is low. This is known as the low basis theorem.
  • Any such tree has a path that is hyperimmune free. This means that any function computable from the path is dominated by a computable function.
  • For any noncomputable subset of the tree has a path that does not compute .

A weak form of Kőnig's lemma which states that every infinite binary tree has an infinite branch is used to define the subsystem WKL0 of second-order arithmetic. This subsystem has an important role in reverse mathematics. Here a binary tree is one in which every term of every sequence in the tree is 0 or 1, which is to say the tree is computably bounded via the constant function 2. The full form of Kőnig's lemma is not provable in WKL0, but is equivalent to the stronger subsystem ACA0.

Relationship to constructive mathematics and compactness

The proof given above is not generally considered to be constructive, because at each step it uses a proof by contradiction to establish that there exists an adjacent vertex from which infinitely many other vertices can be reached, and because of the reliance on a weak form of the axiom of choice. Facts about the computational aspects of the lemma suggest that no proof can be given that would be considered constructive by the main schools of constructive mathematics.

The fan theorem of L. E. J. Brouwer (1927) is, from a classical point of view, the contrapositive of a form of Kőnig's lemma. A subset S of is called a bar if any function from to the set has some initial segment in S. A bar is detachable if every sequence is either in the bar or not in the bar (this assumption is required because the theorem is ordinarily considered in situations where the law of the excluded middle is not assumed). A bar is uniform if there is some number so that any function from to has an initial segment in the bar of length no more than . Brouwer's fan theorem says that any detachable bar is uniform.

This can be proven in a classical setting by considering the bar as an open covering of the compact topological space . Each sequence in the bar represents a basic open set of this space, and these basic open sets cover the space by assumption. By compactness, this cover has a finite subcover. The N of the fan theorem can be taken to be the length of the longest sequence whose basic open set is in the finite subcover. This topological proof can be used in classical mathematics to show that the following form of Kőnig's lemma holds: for any natural number k, any infinite subtree of the tree has an infinite path.

Relationship with the axiom of choice

Kőnig's lemma may be considered to be a choice principle; the first proof above illustrates the relationship between the lemma and the axiom of dependent choice. At each step of the induction, a vertex with a particular property must be selected. Although it is proved that at least one appropriate vertex exists, if there is more than one suitable vertex there may be no canonical choice. In fact, the full strength of the axiom of dependent choice is not needed; as described below, the axiom of countable choice suffices.

If the graph is countable, the vertices are well-ordered and one can canonically choose the smallest suitable vertex. In this case, Kőnig's lemma is provable in second-order arithmetic with arithmetical comprehension, and, a fortiori, in ZF set theory (without choice).

Kőnig's lemma is essentially the restriction of the axiom of dependent choice to entire relations such that for each there are only finitely many such that . Although the axiom of choice is, in general, stronger than the principle of dependent choice, this restriction of dependent choice is equivalent to a restriction of the axiom of choice. In particular, when the branching at each node is done on a finite subset of an arbitrary set not assumed to be countable, the form of Kőnig's lemma that says "Every infinite finitely branching tree has an infinite path" is equivalent to the principle that every countable set of finite sets has a choice function, that is to say, the axiom of countable choice for finite sets.[3] This form of the axiom of choice (and hence of Kőnig's lemma) is not provable in ZF set theory.

Generalization

In the category of sets, the inverse limit of any inverse system of non-empty finite sets is non-empty. This may be seen as a generalization of Kőnig's lemma and can be proved with Tychonoff's theorem, viewing the finite sets as compact discrete spaces, and then using the finite intersection property characterization of compactness.

See also

  • Aronszajn tree, for the possible existence of counterexamples when generalizing the lemma to higher cardinalities.
  • PA degree

Notes

  1. ^ Kőnig (1927) as explained in Franchella (1997)
  2. ^ Rogers (1967), p. 418ff.
  3. ^ Truss (1976), p. 273; Howard & Rubin (1998), pp. 20, 243; compare Lévy (1979), Exercise IX.2.18.

References

  • Brouwer, L. E. J. (1927), On the Domains of Definition of Functions. published in van Heijenoort, Jean, ed. (1967), From Frege to Gödel
  • Franchella, Miriam (1997), "On the origins of Dénes König's infinity lemma", Archive for History of Exact Sciences, 51 (51(1)3:2-3): 3–27, doi:10.1007/BF00376449, S2CID 117198918
  • Howard, Paul; Rubin, Jean (1998), Consequences of the Axiom of Choice, Mathematical Surveys and Monographs, vol. 59, Providence, RI: American Mathematical Society
  • Kőnig, D. (1927), "Über eine Schlussweise aus dem Endlichen ins Unendliche", Acta Sci. Math. (Szeged) (in German), 3 (2–3): 121–130, archived from the original on 2014-12-23, retrieved 2014-12-23
  • Lévy, Azriel (1979), Basic Set Theory, Springer, ISBN 3-540-08417-7, MR 0533962; reprint, Dover, 2002, ISBN 0-486-42079-5.
  • Rogers, Hartley Jr. (1967), Theory of Recursive Functions and Effective Computability, McGraw-Hill, MR 0224462
  • Truss, J. (1976), "Some cases of König's lemma", in Marek, V. Wiktor; Srebrny, Marian; Zarach, Andrzej (eds.), Set Theory and Hierarchy Theory a Memorial Tribute to Andrzej Mostowski, Lecture Notes in Mathematics, vol. 537, Springer, pp. 273–284, doi:10.1007/BFb0096907, ISBN 978-3-540-07856-2, MR 0429557

Further reading

Read other articles:

Will ForteForte di WonderCon tahun 2015LahirOrville Willis Forte IV17 Juni 1970 (umur 53)Alameda County, California, Amerika SerikatNama lainOrville ForteAlmamaterUniversitas California, Los AngelesPekerjaanAktor, pelawak, penulis, produserTahun aktif1997–sekarang Orville Willis Forte IV (/ˈfɔːrteɪ/;[1] lahir 17 Juni 1970) adalah aktor, pelawak, penulis dan produser asal Amerika Serikat. Perannya termasuk menjadi anggota di Saturday Night Live, serta pembuat dan bint…

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁地…

Questa voce o sezione sull'argomento società calcistiche è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti del progetto di riferimento. Football Club ParabiagoCalcio Piccolo…

Canadian peace activist For other uses, see Russow. This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Joan Russow – news · newspapers · books · scholar · JSTOR (September 2016) (Learn how and when to…

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Grand Canal Shoppes – berita · surat kabar · buku · cendekiawan · JSTOR (Januari 2016) Grand Canal ShoppesLokasiParadise, NevadaAlamatLas Vegas BoulevardLas Vegas, NevadaTanggal dibuka1999PengembangLas Vegas San…

Soviet military commander (1896–1937) In this name that follows Eastern Slavic naming customs, the patronymic is Emmanuilovich and the family name is Yakir. Iona YakirBirth nameIona Emmanuilovich YakirBorn(1896-08-03)3 August 1896 Kishinev, Bessarabia, Imperial RussiaDied12 June 1937(1937-06-12) (aged 40) Moscow, Russian SFSR, Soviet UnionAllegiance Russian SFSR Soviet UnionService/branch Red ArmyYears of service1918–1937Rank Komandarm 1st rankUnit45th Rifle Division, 58th Rifl…

Beberapa atau seluruh referensi dari artikel ini mungkin tidak dapat dipercaya kebenarannya. Bantulah dengan memberikan referensi yang lebih baik atau dengan memeriksa apakah referensi telah memenuhi syarat sebagai referensi tepercaya. Referensi yang tidak benar dapat dihapus sewaktu-waktu. SMK KARTIKATAMA 1 METROInformasiDidirikan13 Januari 1987JenisSMK SwastaKepala SekolahSujonoRentang kelasX-XIIKurikulumKTSPAlamatLokasiJalan Kapten P.Tendean, Kecamatan margorejo, Metro, Lampung, Indonesi…

2014 American filmTekken 2: Kazuya's RevengeSingaporan theatrical release posterDirected byWych KaosWritten by Nicole Jones Steven Paul Based onTekkenby Bandai Namco GamesProduced by Steven Paul Pimol Srivikorn Starring Kane Kosugi Cary-Hiroyuki Tagawa Rade Šerbedžija Gary Daniels Kelly Wenham CinematographyWych KaosEdited by Vance Null Robert Ferretti Music byMisha SegalProductioncompanyCrystal Sky PicturesDistributed bySP DistributionRelease dates August 6, 2014 (2014-08-06)&#…

American football player (born 1983) This article is about the former football running back. For his son and current running back, see Frank Gore Jr. American football player Frank GoreGore with the San Francisco 49ers in 2012San Francisco 49ersPosition:Football personnel advisorPersonal informationBorn: (1983-05-14) May 14, 1983 (age 41)Miami, Florida, U.S.Height:5 ft 9 in (1.75 m)Weight:212 lb (96 kg)Career informationHigh school:Coral Gables Senior (Coral Gables,…

Dam in Thrissur, KeralaPeringalkuthu DamShutter of Peringalkuthu DamLocation of Peringalkuthu Dam in IndiaShow map of IndiaPeringalkuthu Dam (Kerala)Show map of KeralaOfficial namePeringalkuthu DamLocationChalakudy, Thrissur, KeralaCoordinates10°18′55″N 76°38′04″E / 10.3152°N 76.6344°E / 10.3152; 76.6344Construction began1949Opening date15 May 1957Operator(s)Kerala State Electricity BoardDam and spillwaysImpoundsChalakkudi RiverHeight23 metresLength2…

Pour les articles homonymes, voir Madison. Dolley Madison Dolley Madison, en 1818. Première dame des États-Unis 4 mars 1809 – 4 mars 1817(8 ans) Prédécesseur Martha Jefferson Randolph Successeur Elizabeth Monroe Biographie Nom de naissance Dorothea Payne Todd Madison Date de naissance 20 mai 1768 Lieu de naissance Comté de Guilford, province de Caroline du Nord, Treize colonies Date de décès 12 juillet 1849 (à 81 ans) Lieu de décès Washington, D.C., États-Unis Co…

† Большая гавайская древесница Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Завр…

Indian theoretical physicist (born 1929) Asoke Nath MitraAsoke Nath Mitra at Delhi University in April 1985 on his 56th BirthdayBorn(1929-04-15)April 15, 1929Rajshahi, Rajshahi Division, Bengal Province, British India (modern-day Bangladesh)Died(2022-11-26)November 26, 2022 (aged 93)New Delhi, IndiaAlma materDelhi University (PhD), India, Cornell University (PhD) United StatesKnown forTheoretical Nuclear Physics, Particle Physics, Quantum Field TheoryAwardsBhatnagar AwardScientific car…

Ethnological Museum of BerlinLocation of Ethnological Museum in Berlin, GermanyShow map of BerlinEthnological Museum of Berlin (Germany)Show map of GermanyFormer nameMuseum für Völkerkunde Berlin-DahlemEstablishedOriginal in 1873, new building in 1886, and after World War II rebuilt in present form in 1970LocationMitteCoordinates52°31′03″N 13°24′10″E / 52.5175°N 13.402778°E / 52.5175; 13.402778TypeEthnologicalDirectorViola KönigWebsiteEthnologisches Museum …

SaloméPosterSutradaraCharles BryantProduserAlla NazimovaDitulis olehOscar WildeNatacha RambovaPemeranAlla NazimovaMitchell LewisRose DioneEarl SchenckArthur JasmineNigel De BrulierFrederick PetersLouis DumarSinematograferCharles Van EngerDistributorNazimova ProductionsTanggal rilis 15 Februari 1923 (1923-02-15) Durasi74 menitNegaraAmerika SerikatBahasaAntarjudul InggrisAnggaran$350,000 Salomé (1923), sebuah film bisu garapan Charles Bryant dan dibintangi oleh Alla Nazimova, adalah sebuah …

The 91st United States Congress began on January 3, 1969. There were 12 new senators (four Democrats, eight Republicans) and 38 new representatives (19 Democrats, 19 Republicans), as well as one new delegate (a Democrat), at the start of the first session. Additionally, four senators (two Democrats, two Republicans) and 14 representatives (seven Democrats, seven Republicans) took office on various dates in order to fill vacancies during the 91st Congress before it ended on January 3, 1971. Due t…

Minor Anglo-Saxon kingdom in eastern England The kingdom of Lindsey The Kingdom of Lindsey or Linnuis (Old English: Lindesege) was a lesser Anglo-Saxon kingdom, which was absorbed into Northumbria in the 7th century. The name Lindsey derives from the Old English toponym Lindesege, meaning Isle of Lind. Lindum Colonia was the Roman name of the settlement which is now the City of Lincoln in Lincolnshire. (Lindum Colonia was shortened in Old English to Lindocolina and then Lincylene.)[1] Li…

India in Bangladesh in 2014    Bangladesh IndiaDates 15 June – 19 June 2014Captains Mushfiqur Rahim Suresh RainaOne Day International seriesResults India won the 3-match series 2–0Most runs Mushfiqur Rahim (70) Robin Uthappa (69)Most wickets Taskin Ahmed (7) Stuart Binny (6)Player of the series Stuart Binny (Ind) The Indian national cricket team toured Bangladesh from 15 to 19 June 2014 to play a three-match One Day International (ODI) series against the Bangladesh national cr…

Wilayah administratif kota Padang. Secara geografi kota Padang terletak di pesisir pantai barat pulau Sumatra, dengan garis pantai sepanjang 84 km. Luas keseluruhan Kota Padang adalah 694,96 km², dan lebih dari 60% dari luas tersebut, sekitar ± 434,63 km² merupakan daerah perbukitan yang ditutupi hutan lindung, sementara selebihnya merupakan daerah efektif perkotaan. Sedangkan keadaan topografi kota ini bervariasi, 49,48% luas wilayah daratan Kota Padang berada pada wilayah kemiringan lebih d…

Castle in England that gave its name to the nearby town of the same name This article is about a castle. For the town of the same name in which it is situated, see Barnard Castle. Barnard Castle above the River Tees A plan of the castle from J. D. Mackenzie's The Castles of England: their story and structure[1] Painting of Barnard Castle, by J. M. W. Turner (c. 1825) Barnard Castle (grid reference NZ04911641) is a ruined medieval castle situated in the town of the same name in County Dur…