Let be a Banach space, and let be a convex cone such that , and is dense in , i.e. the closure of the set . is also known as a total cone. Let be a non-zero compact operator, and assume that it is positive, meaning that , and that its spectral radius is strictly positive.
Then is an eigenvalue of with positive eigenvector, meaning that there exists such that .
De Pagter's theorem
If the positive operator is assumed to be ideal irreducible, namely,
there is no ideal of such that , then de Pagter's theorem[3] asserts that .
Therefore, for ideal irreducible operators the assumption is not needed.
References
^Du, Y. (2006). "1. Krein–Rutman Theorem and the Principal Eigenvalue". Order structure and topological methods in nonlinear partial differential equations. Vol. 1. Maximum principles and applications. Series in Partial Differential Equations and Applications. Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd. ISBN981-256-624-4. MR2205529.
^Kreĭn, M.G.; Rutman, M.A. (1948). "Linear operators leaving invariant a cone in a Banach space". Uspekhi Mat. Nauk. New Series (in Russian). 3 (1(23)): 1–95. MR0027128.. English translation: Kreĭn, M.G.; Rutman, M.A. (1950). "Linear operators leaving invariant a cone in a Banach space". Amer. Math. Soc. Transl. 1950 (26). MR0038008.