In mathematics, specifically in spectral theory , a discrete spectrum of a closed linear operator is defined as the set of isolated points of its spectrum such that the rank of the corresponding Riesz projector is finite.
Definition
A point
λ
∈
C
{\displaystyle \lambda \in \mathbb {C} }
in the spectrum
σ
(
A
)
{\displaystyle \sigma (A)}
of a closed linear operator
A
:
B
→
B
{\displaystyle A:\,{\mathfrak {B}}\to {\mathfrak {B}}}
in the Banach space
B
{\displaystyle {\mathfrak {B}}}
with domain
D
(
A
)
⊂
B
{\displaystyle {\mathfrak {D}}(A)\subset {\mathfrak {B}}}
is said to belong to discrete spectrum
σ
d
i
s
c
(
A
)
{\displaystyle \sigma _{\mathrm {disc} }(A)}
of
A
{\displaystyle A}
if the following two conditions are satisfied:[ 1]
λ
{\displaystyle \lambda }
is an isolated point in
σ
(
A
)
{\displaystyle \sigma (A)}
;
The rank of the corresponding Riesz projector
P
λ
=
−
1
2
π
i
∮
Γ
(
A
−
z
I
B
)
−
1
d
z
{\displaystyle P_{\lambda }={\frac {-1}{2\pi \mathrm {i} }}\oint _{\Gamma }(A-zI_{\mathfrak {B}})^{-1}\,dz}
is finite.
Here
I
B
{\displaystyle I_{\mathfrak {B}}}
is the identity operator in the Banach space
B
{\displaystyle {\mathfrak {B}}}
and
Γ
⊂
C
{\displaystyle \Gamma \subset \mathbb {C} }
is a smooth simple closed counterclockwise-oriented curve bounding an open region
Ω
⊂
C
{\displaystyle \Omega \subset \mathbb {C} }
such that
λ
{\displaystyle \lambda }
is the only point of the spectrum of
A
{\displaystyle A}
in the closure of
Ω
{\displaystyle \Omega }
; that is,
σ
(
A
)
∩
Ω
¯
=
{
λ
}
.
{\displaystyle \sigma (A)\cap {\overline {\Omega }}=\{\lambda \}.}
Relation to normal eigenvalues
The discrete spectrum
σ
d
i
s
c
(
A
)
{\displaystyle \sigma _{\mathrm {disc} }(A)}
coincides with the set of normal eigenvalues of
A
{\displaystyle A}
:
σ
d
i
s
c
(
A
)
=
{
normal eigenvalues of
A
}
.
{\displaystyle \sigma _{\mathrm {disc} }(A)=\{{\mbox{normal eigenvalues of }}A\}.}
[ 2] [ 3] [ 4]
Relation to isolated eigenvalues of finite algebraic multiplicity
In general, the rank of the Riesz projector can be larger than the dimension of the root lineal
L
λ
{\displaystyle {\mathfrak {L}}_{\lambda }}
of the corresponding eigenvalue, and in particular it is possible to have
d
i
m
L
λ
<
∞
{\displaystyle \mathrm {dim} \,{\mathfrak {L}}_{\lambda }<\infty }
,
r
a
n
k
P
λ
=
∞
{\displaystyle \mathrm {rank} \,P_{\lambda }=\infty }
. So, there is the following inclusion:
σ
d
i
s
c
(
A
)
⊂
{
isolated points of the spectrum of
A
with finite algebraic multiplicity
}
.
{\displaystyle \sigma _{\mathrm {disc} }(A)\subset \{{\mbox{isolated points of the spectrum of }}A{\mbox{ with finite algebraic multiplicity}}\}.}
In particular, for a quasinilpotent operator
Q
:
l
2
(
N
)
→
l
2
(
N
)
,
Q
:
(
a
1
,
a
2
,
a
3
,
…
)
↦
(
0
,
a
1
/
2
,
a
2
/
2
2
,
a
3
/
2
3
,
…
)
,
{\displaystyle Q:\,l^{2}(\mathbb {N} )\to l^{2}(\mathbb {N} ),\qquad Q:\,(a_{1},a_{2},a_{3},\dots )\mapsto (0,a_{1}/2,a_{2}/2^{2},a_{3}/2^{3},\dots ),}
one has
L
λ
(
Q
)
=
{
0
}
{\displaystyle {\mathfrak {L}}_{\lambda }(Q)=\{0\}}
,
r
a
n
k
P
λ
=
∞
{\displaystyle \mathrm {rank} \,P_{\lambda }=\infty }
,
σ
(
Q
)
=
{
0
}
{\displaystyle \sigma (Q)=\{0\}}
,
σ
d
i
s
c
(
Q
)
=
∅
{\displaystyle \sigma _{\mathrm {disc} }(Q)=\emptyset }
.
Relation to the point spectrum
The discrete spectrum
σ
d
i
s
c
(
A
)
{\displaystyle \sigma _{\mathrm {disc} }(A)}
of an operator
A
{\displaystyle A}
is not to be confused with the point spectrum
σ
p
(
A
)
{\displaystyle \sigma _{\mathrm {p} }(A)}
, which is defined as the set of eigenvalues of
A
{\displaystyle A}
.
While each point of the discrete spectrum belongs to the point spectrum,
σ
d
i
s
c
(
A
)
⊂
σ
p
(
A
)
,
{\displaystyle \sigma _{\mathrm {disc} }(A)\subset \sigma _{\mathrm {p} }(A),}
the converse is not necessarily true: the point spectrum does not necessarily consist of isolated points of the spectrum, as one can see from the example of the left shift operator ,
L
:
l
2
(
N
)
→
l
2
(
N
)
,
L
:
(
a
1
,
a
2
,
a
3
,
…
)
↦
(
a
2
,
a
3
,
a
4
,
…
)
.
{\displaystyle L:\,l^{2}(\mathbb {N} )\to l^{2}(\mathbb {N} ),\quad L:\,(a_{1},a_{2},a_{3},\dots )\mapsto (a_{2},a_{3},a_{4},\dots ).}
For this operator, the point spectrum is the unit disc of the complex plane, the spectrum is the closure of the unit disc, while the discrete spectrum is empty:
σ
p
(
L
)
=
D
1
,
σ
(
L
)
=
D
1
¯
;
σ
d
i
s
c
(
L
)
=
∅
.
{\displaystyle \sigma _{\mathrm {p} }(L)=\mathbb {D} _{1},\qquad \sigma (L)={\overline {\mathbb {D} _{1}}};\qquad \sigma _{\mathrm {disc} }(L)=\emptyset .}
See also
References
^ Reed, M.; Simon, B. (1978). Methods of modern mathematical physics, vol. IV. Analysis of operators . Academic Press [Harcourt Brace Jovanovich Publishers], New York.
^ Gohberg, I. C; Kreĭn, M. G. (1960). "Fundamental aspects of defect numbers, root numbers and indexes of linear operators" . American Mathematical Society Translations . 13 : 185–264.
^ Gohberg, I. C; Kreĭn, M. G. (1969). Introduction to the theory of linear nonselfadjoint operators . American Mathematical Society, Providence, R.I.
^ Boussaid, N.; Comech, A. (2019). Nonlinear Dirac equation. Spectral stability of solitary waves . American Mathematical Society, Providence, R.I. ISBN 978-1-4704-4395-5 .
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics