Naturally occurring dysprosium (66 Dy) is composed of 7 stable isotopes , 156 Dy, 158 Dy, 160 Dy, 161 Dy, 162 Dy, 163 Dy and 164 Dy, with 164 Dy being the most abundant (28.18% natural abundance ). Twenty-nine radioisotopes have been characterized, with the most stable being 154 Dy with a half-life of 1.4 million years, 159 Dy with a half-life of 144.4 days, and 166 Dy with a half-life of 81.6 hours. All of the remaining radioactive isotopes have half-lives that are less than 10 hours, and the majority of these have half-lives that are less than 30 seconds. This element also has 12 meta states , with the most stable being 165m Dy (half-life 1.257 minutes), 147m Dy (half-life 55.7 seconds) and 145m Dy (half-life 13.6 seconds).
The primary decay mode before the most abundant stable isotope, 164 Dy, is electron capture , and the primary mode after is beta decay . The primary decay products before 164 Dy are terbium isotopes, and the primary products after are holmium isotopes. Dysprosium is the heaviest element to have isotopes that are predicted to be stable rather than observationally stable isotopes that are predicted to be radioactive.
List of isotopes
Nuclide[ n 1]
Z
N
Isotopic mass (Da ) [ 5] [ n 2] [ n 3]
Half-life [ 1] [ n 4]
Decay mode [ 1] [ n 5]
Daughter isotope [ n 6]
Spin andparity [ 1] [ n 7] [ n 4]
Natural abundance (mole fraction)
Excitation energy
Normal proportion[ 1]
Range of variation
139 Dy
66
73
138.95953(54)#
600(200) ms
β+ (~89%)
139 Tb
(7/2+)
β+ , p (~11%)
138 Gd
140 Dy
66
74
139.95402(43)#
700# ms
β+ ?
140 Tb
0+
β+ , p?
139 Gd
140m Dy
2166.1(5) keV
7.0(5) μs
IT
140 Dy
8−
141 Dy
66
75
140.95128(32)#
0.90(14) s
β+
141 Tb
(9/2−)
β+ , p?
140 Gd
142 Dy
66
76
141.94619(78)#
2.3(3) s
β+ (90%)
142 Tb
0+
EC (10%)
β+ , p (0.06%)
141 Gd
143 Dy
66
77
142.943994(14)
5.6(10) s
β+
143 Tb
(1/2+)
β+ , p?
142 Gd
143m1 Dy
310.7(6) keV
3.0(3) s
β+
143 Tb
(11/2−)
β+ , p?
142 Gd
143m2 Dy
406.3(8) keV
1.2(3) μs
IT
143 Dy
(7/2−)
144 Dy
66
78
143.9392695(77)
9.1(4) s
β+
144 Tb
0+
β+ , p?
143 Gd
145 Dy
66
79
144.9374740(70)
9.5(10) s
β+
145 Tb
(1/2+)
β+ , p?
144 Gd
145m Dy
118.2(2) keV
14.1(7) s
β+
145 Tb
(11/2−)
β+ , p (~50%)
144 Gd
146 Dy
66
80
145.9328445(72)
33.2(7) s
β+
146 Tb
0+
146m Dy
2934.5(4) keV
150(20) ms
IT
146 Dy
10+
147 Dy
66
81
146.9310827(95)
67(7) s
β+ (99.95%)
147 Tb
(1/2+)
β+ , p (0.05%)
146 Tb
147m1 Dy
750.5(4) keV
55.2(5) s
β+ (68.9%)
147 Tb
(11/2−)
IT (31.1%)
147 Dy
147m2 Dy
3407.2(8) keV
0.40(1) μs
IT
147 Dy
(27/2−)
148 Dy
66
82
147.9271499(94)
3.3(2) min
β+
148 Tb
0+
148m Dy
2919.1(10) keV
471(20) ns
IT
148 Dy
10+
149 Dy
66
83
148.9273275(99)
4.20(14) min
β+
149 Tb
7/2−
149m Dy
2661.1(4) keV
490(15) ms
IT (99.3%)
149 Dy
27/2−
β+ (0.7%)
149 Tb
150 Dy
66
84
149.9255931(46)
7.17(5) min
β+ (66.4%)
150 Tb
0+
α (33.6%)
146 Gd
151 Dy
66
85
150.9261913(35)
17.9(3) min
β+ (94.4%)
151 Tb
7/2−
α (5.6%)
147 Gd
152 Dy
66
86
151.9247253(49)
2.38(2) h
EC (99.90%)
152 Tb
0+
α (0.100%)
148 Gd
153 Dy
66
87
152.9257717(43)
6.4(1) h
β+ (99.99%)
153 Tb
7/2−
α (0.0094%)
149 Gd
154 Dy
66
88
153.9244289(80)
1.40(8)×106 y[ 6]
α[ n 8]
150 Gd
0+
155 Dy
66
89
154.925758(10)
9.9(2) h
β+
155 Tb
3/2−
155m Dy
234.33(3) keV
6(1) μs
IT
155 Dy
11/2−
156 Dy
66
90
155.9242836(11)
Observationally Stable [ n 9]
0+
5.6(3)×10−4
157 Dy
66
91
156.9254696(55)
8.14(4) h
β+
157 Tb
3/2−
157m1 Dy
161.99(3) keV
1.3(2) μs
IT
157 Dy
9/2+
157m2 Dy
199.38(7) keV
21.6(16) ms
IT
157 Dy
11/2−
158 Dy
66
92
157.9244148(25)
Observationally Stable [ n 10]
0+
9.5(3)×10−4
159 Dy
66
93
158.9257459(15)
144.4(2) d
EC
159 Tb
3/2−
159m Dy
352.77(14) keV
122(3) μs
IT
159 Dy
11/2−
160 Dy
66
94
159.92520358(75)
Observationally Stable [ n 11]
0+
0.02329(18)
161 Dy
66
95
160.92693943(75)
Observationally Stable [ n 12]
5/2+
0.18889(42)
161m Dy
485.56(16) keV
0.76(17) μs
IT
161 Dy
11/2−
162 Dy
66
96
161.92680451(75)
Observationally Stable [ n 13]
0+
0.25475(36)
162m Dy
2188.1(3) keV
8.3(3) μs
IT
162 Dy
8+
163 Dy
66
97
162.92873722(74)
Stable [ n 14]
5/2−
0.24896(42)
164 Dy[ n 15]
66
98
163.92918082(75)
Stable
0+
0.28260(54)
165 Dy
66
99
164.93170940(75)
2.332(4) h
β−
165 Ho
7/2+
165m Dy
108.1552(13) keV
1.257(6) min
IT (97.76%)
165 Dy
1/2−
β− (2.24%)
165 Ho
166 Dy
66
100
165.93281281(86)
81.6(1) h
β−
166 Ho
0+
167 Dy
66
101
166.9356824(43)
6.20(8) min
β−
167 Ho
(1/2−)
168 Dy
66
102
167.93713(15)
8.7(3) min
β−
168 Ho
0+
168m Dy
1378.2(6) keV
0.57(7) μs
IT
168 Dy
(4−)
169 Dy
66
103
168.94032(32)
39(8) s
β−
169 Ho
(5/2)−
169m Dy
166.1(5) keV
1.26(17) μs
IT
169 Dy
(1/2−)
170 Dy
66
104
169.94234(22)#
54.9(80) s
β−
170 Ho
0+
170m Dy
1643.8(3) keV
0.99(4) μs
IT
170 Dy
(6+)
171 Dy
66
105
170.94631(22)#
4.07(40) s
β−
171 Ho
7/2−#
172 Dy
66
106
171.94873(32)#
3.4(2) s
β−
172 Ho
0+
172m Dy
1278(1) keV
710(50) ms
IT (81%)
172 Dy
(8−)
β− (19%)
172 Ho
173 Dy
66
107
172.95304(43)#
1.43(20) s
β−
173 Ho
9/2+#
β− , n?
172 Ho
174 Dy
66
108
173.95585(54)#
1# s [>300 ns]
β− ?
174 Ho
0+
β− , n?
173 Ho
175 Dy
66
109
174.96057(54)#
390# ms [>550 ns]
β− ?
175 Ho
1/2-#
β− , n?
174 Ho
176 Dy
66
110
175.96392(54)#
440# ms [>550 ns]
β− ?
176 Ho
0+
β− , n?
175 Ho
This table header & footer:
^ m Dy – Excited nuclear isomer .
^ ( ) – Uncertainty (1σ ) is given in concise form in parentheses after the corresponding last digits.
^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
^
Modes of decay:
^ Bold symbol as daughter – Daughter product is stable.
^ ( ) spin value – Indicates spin with weak assignment arguments.
^ Theorized to also undergo β+ β+ decay to 154 Gd
^ Believed to undergo α decay to 152 Gd or β+ β+ decay to 156 Gd with a half-life over 1018 years
^ Believed to undergo α decay to 154 Gd or β+ β+ decay to 158 Gd
^ Believed to undergo α decay to 156 Gd
^ Believed to undergo α decay to 157 Gd
^ Believed to undergo α decay to 158 Gd
^ Can undergo bound-state β− decay to 163 Ho66+ with a half-life of 47 days when fully ionized [ 7]
^ Heaviest theoretically stable nuclide
Dysprosium-165
The radioactive isotope 165 Dy, with a half-life of 2.334 hours, has radiopharmaceutical uses in radiation synovectomy of the knee. It had been previously performed with colloidal -sized particles containing longer-lived isotopes such as 198 Au and 90 Y . The major problem with the usage of those isotopes was radiation leakage out of the knee. 165 Dy, with its shorter half-life and thus shorter period of potential radiation leakage, is more suitable for the procedure.[ 8]
References
^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF) . Chinese Physics C . 45 (3): 030001. doi :10.1088/1674-1137/abddae .
^ Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154". Scientific Reports . 12 (1). Springer Science and Business Media LLC. doi :10.1038/s41598-022-12684-6 . ISSN 2045-2322 .
^ "Standard Atomic Weights: Dysprosium" . CIAAW . 2001.
^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)" . Pure and Applied Chemistry . doi :10.1515/pac-2019-0603 . ISSN 1365-3075 .
^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C . 45 (3): 030003. doi :10.1088/1674-1137/abddaf .
^ Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154" . Scientific Reports . 12 (1). Springer Science and Business Media LLC: 8988. Bibcode :2022NatSR..12.8988C . doi :10.1038/s41598-022-12684-6 . ISSN 2045-2322 . PMC 9148308 . PMID 35643721 .
^ M. Jung; et al. (1992-10-12). "First observation of bound-state β− decay". Physical Review Letters . 69 (15): 2164– 2167. Bibcode :1992PhRvL..69.2164J . doi :10.1103/PhysRevLett.69.2164 . PMID 10046415 .
^ Hnatowich, D. J.; Kramer, R. I.; Sledge, C. B.; Noble, J.; Shortkroff, S. (1978-03-01). "Dysprosium-165 ferric hydroxide macroaggregates for radiation synovectomy. [Rabbits]" . J. Nucl. Med.; (United States) . 19 (3). OSTI 5045140 .
Isotope masses from:
Isotopic compositions and standard atomic masses from:
"News & Notices: Standard Atomic Weights Revised" . International Union of Pure and Applied Chemistry . 19 October 2005.
Half-life, spin, and isomer data selected from the following sources.
Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties" , Nuclear Physics A , 729 : 3– 128, Bibcode :2003NuPhA.729....3A , doi :10.1016/j.nuclphysa.2003.11.001
National Nuclear Data Center . "NuDat 2.x database" . Brookhaven National Laboratory .
Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida : CRC Press . ISBN 978-0-8493-0485-9 .
Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Period
Hydrogen and alkali metals
Alkaline earth metals
Pnictogens
Chalcogens
Halogens
Noble gases
①
1
2
②
3
4
5
6
7
8
9
10
③
11
12
13
14
15
16
17
18
④
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
⑤
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
⑥
55
56
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
⑦
87
88
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
⑧
119
120
57
58
59
60
61
62
63
64
65
66
67
68
69
70
89
90
91
92
93
94
95
96
97
98
99
100
101
102