Actinium (89Ac) has no stable isotopes and no characteristic terrestrial isotopic composition, thus a standard atomic weight cannot be given. There are 34 known isotopes, from 203Ac to 236Ac, and 7 isomers. Three isotopes are found in nature, 225Ac, 227Ac and 228Ac, as intermediate decay products of, respectively, 237Np, 235U, and 232Th. 228Ac and 225Ac are extremely rare, so almost all natural actinium is 227Ac.
The most stable isotopes are 227Ac with a half-life of 21.772 years, 225Ac with a half-life of 10.0 days, and 226Ac with a half-life of 29.37 hours. All other isotopes have half-lives under 10 hours, and most under a minute. The shortest-lived known isotope is 217Ac with a half-life of 69 ns.
Purified 227Ac comes into equilibrium with its decay products (227Th and 223Fr) after 185 days.[2]
^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
Actinium-225 is a highly radioactive isotope with 136 neutrons. It is an alpha emitter and has a half-life of 9.919 days. As of 2024, it is being researched as a possible alpha source in targeted alpha therapy.[12][13][14] Actinium-225 undergoes a series of three alpha decays – via the short-lived francium-221 and astatine-217 – to 213Bi, which itself is used as an alpha source.[15] Another benefit is that the decay chain of 225Ac ends in the nuclide 209Bi,[note 1] which has a considerably shorter biological half-life than lead.[16][17] However, a major factor limiting its usage is the difficulty in producing the short-lived isotope, as it is most commonly isolated from aging parent nuclides (such as 233U); it may also be produced in cyclotrons, linear accelerators, or fast breeder reactors.[18]
Actinium-226
Actinium-226 is an isotope of actinium with a half-life of 29.37 hours. It mainly (83%) undergos beta decay, sometimes (17%) undergo electron capture, and rarely (0.006%) undergo alpha decay.[1] There are researches on 226Ac to use it in SPECT.[19][20]
Actinium-227
Actinium-227 is the most stable isotope of actinium, with a half-life of 21.772 years. It mainly (98.62%) undergos beta decay, but sometimes (1.38%) it will undergo alpha decay instead.[1]227Ac is a member of the actinium series. It is found only in traces in uranium ores – one tonne of uranium in ore contains about 0.2 milligrams of 227Ac.[21][22]227Ac is prepared, in milligram amounts, by the neutron irradiation of 226Ra in a nuclear reactor.[22][23]
227Ac is highly radioactive and was therefore studied for use as an active element of radioisotope thermoelectric generators, for example in spacecraft. The oxide of 227Ac pressed with beryllium is also an efficient neutron source with the activity exceeding that of the standard americium-beryllium and radium-beryllium pairs.[24] In all those applications, 227Ac (a beta source) is merely a progenitor which generates alpha-emitting isotopes upon its decay. Beryllium captures alpha particles and emits neutrons owing to its large cross-section for the (α,n) nuclear reaction:
The 227AcBe neutron sources can be applied in a neutron probe – a standard device for measuring the quantity of water present in soil, as well as moisture/density for quality control in highway construction.[25][26] Such probes are also used in well logging applications, in neutron radiography, tomography and other radiochemical investigations.[27]
The medium half-life of 227Ac makes it a very convenient radioactive isotope in modeling the slow vertical mixing of oceanic waters. The associated processes cannot be studied with the required accuracy by direct measurements of current velocities (of the order 50 meters per year). However, evaluation of the concentration depth-profiles for different isotopes allows estimating the mixing rates. The physics behind this method is as follows: oceanic waters contain homogeneously dispersed 235U. Its decay product, 231Pa, gradually precipitates to the bottom, so that its concentration first increases with depth and then stays nearly constant. 231Pa decays to 227Ac; however, the concentration of the latter isotope does not follow the 231Pa depth profile, but instead increases toward the sea bottom. This occurs because of the mixing processes which raise some additional 227Ac from the sea bottom. Thus analysis of both 231Pa and 227Ac depth profiles allows researchers to model the mixing behavior.[28][29]
^ Bismuth-209 decays into thallium-205 with a half-life exceeding 1019 years, but this half-life is so long that for practical purposes bismuth-209 can be considered stable.
^Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
^Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4. "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 [years]. No growth of Cf248 was detected, and a lower limit for the β− half-life can be set at about 104 [years]. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 [years]."
^This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
^Excluding those "classically stable" nuclides with half-lives significantly in excess of 232Th; e.g., while 113mCd has a half-life of only fourteen years, that of 113Cd is eight quadrillion years.
^Handbook on the toxicology of metals. Volume 2: Specific metals (Fourth ed.). Amsterdam Boston Heidelberg London: Elsevier, Aademic Press. 2015. p. 655. ISBN978-0-12-398293-3.
^Dhiman, Deeksha; Vatsa, Rakhee; Sood, Ashwani (September 2022). "Challenges and opportunities in developing Actinium-225 radiopharmaceuticals". Nuclear Medicine Communications. 43 (9): 970–977. doi:10.1097/MNM.0000000000001594. PMID35950353.
^Koniar, Helena; Rodríguez-Rodríguez, Cristina; Radchenko, Valery; Yang, Hua; Kunz, Peter; Rahmim, Arman; Uribe, Carlos; Schaffer, Paul (2022-09-12). "SPECT imaging of 226Ac as a theranostic isotope for 225Ac radiopharmaceutical development". Physics in Medicine and Biology. 67 (18). doi:10.1088/1361-6560/ac8b5f. ISSN1361-6560. PMID35985341.
^Dixon, W. R.; Bielesch, Alice; Geiger, K. W. (1957). "Neutron Spectrum of an Actinium–Beryllium Source". Can. J. Phys. 35 (6): 699–702. Bibcode:1957CaJPh..35..699D. doi:10.1139/p57-075.