Fractional Fourier transform

In mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.

The FRFT can be used to define fractional convolution, correlation, and other operations, and can also be further generalized into the linear canonical transformation (LCT). An early definition of the FRFT was introduced by Condon,[1] by solving for the Green's function for phase-space rotations, and also by Namias,[2] generalizing work of Wiener[3] on Hermite polynomials.

However, it was not widely recognized in signal processing until it was independently reintroduced around 1993 by several groups.[4] Since then, there has been a surge of interest in extending Shannon's sampling theorem[5][6] for signals which are band-limited in the Fractional Fourier domain.

A completely different meaning for "fractional Fourier transform" was introduced by Bailey and Swartztrauber[7] as essentially another name for a z-transform, and in particular for the case that corresponds to a discrete Fourier transform shifted by a fractional amount in frequency space (multiplying the input by a linear chirp) and evaluating at a fractional set of frequency points (e.g. considering only a small portion of the spectrum). (Such transforms can be evaluated efficiently by Bluestein's FFT algorithm.) This terminology has fallen out of use in most of the technical literature, however, in preference to the FRFT. The remainder of this article describes the FRFT.

Introduction

The continuous Fourier transform of a function is a unitary operator of space that maps the function to its frequential version (all expressions are taken in the sense, rather than pointwise):

and is determined by via the inverse transform

Let us study its n-th iterated defined by and when n is a non-negative integer, and . Their sequence is finite since is a 4-periodic automorphism: for every function , .

More precisely, let us introduce the parity operator that inverts , . Then the following properties hold:

The FRFT provides a family of linear transforms that further extends this definition to handle non-integer powers of the FT.

Definition

Note: some authors write the transform in terms of the "order a" instead of the "angle α", in which case the α is usually a times π/2. Although these two forms are equivalent, one must be careful about which definition the author uses.

For any real α, the α-angle fractional Fourier transform of a function ƒ is denoted by and defined by

[8][9][10]

For α = π/2, this becomes precisely the definition of the continuous Fourier transform, and for α = −π/2 it is the definition of the inverse continuous Fourier transform.

The FRFT argument u is neither a spatial one x nor a frequency ξ. We will see why it can be interpreted as linear combination of both coordinates (x,ξ). When we want to distinguish the α-angular fractional domain, we will let denote the argument of .

Remark: with the angular frequency ω convention instead of the frequency one, the FRFT formula is the Mehler kernel,

Properties

The α-th order fractional Fourier transform operator, , has the properties:

Additivity

For any real angles α, β,

Linearity

Integer Orders

If α is an integer multiple of , then:

Moreover, it has following relation

Inverse

Commutativity

Associativity

Unitarity

Time Reversal

Transform of a shifted function

Define the shift and the phase shift operators as follows:

Then

that is,

Transform of a scaled function

Define the scaling and chirp multiplication operators as follows:

Then,

Notice that the fractional Fourier transform of cannot be expressed as a scaled version of . Rather, the fractional Fourier transform of turns out to be a scaled and chirp modulated version of where is a different order.[11]

Fractional kernel

The FRFT is an integral transform where the α-angle kernel is

Here again the special cases are consistent with the limit behavior when α approaches a multiple of π.

The FRFT has the same properties as its kernels :

  • symmetry:
  • inverse:
  • additivity:

There also exist related fractional generalizations of similar transforms such as the discrete Fourier transform.

Generalizations

The Fourier transform is essentially bosonic; it works because it is consistent with the superposition principle and related interference patterns. There is also a fermionic Fourier transform.[16] These have been generalized into a supersymmetric FRFT, and a supersymmetric Radon transform.[16] There is also a fractional Radon transform, a symplectic FRFT, and a symplectic wavelet transform.[17] Because quantum circuits are based on unitary operations, they are useful for computing integral transforms as the latter are unitary operators on a function space. A quantum circuit has been designed which implements the FRFT.[18]

Interpretation

A rect function turns into a sinc function as the order of the fractional Fourier transform becomes 1

The usual interpretation of the Fourier transform is as a transformation of a time domain signal into a frequency domain signal. On the other hand, the interpretation of the inverse Fourier transform is as a transformation of a frequency domain signal into a time domain signal. Fractional Fourier transforms transform a signal (either in the time domain or frequency domain) into the domain between time and frequency: it is a rotation in the time–frequency domain. This perspective is generalized by the linear canonical transformation, which generalizes the fractional Fourier transform and allows linear transforms of the time–frequency domain other than rotation.

Take the figure below as an example. If the signal in the time domain is rectangular (as below), it becomes a sinc function in the frequency domain. But if one applies the fractional Fourier transform to the rectangular signal, the transformation output will be in the domain between time and frequency.

Fractional Fourier transform

The fractional Fourier transform is a rotation operation on a time–frequency distribution. From the definition above, for α = 0, there will be no change after applying the fractional Fourier transform, while for α = π/2, the fractional Fourier transform becomes a plain Fourier transform, which rotates the time–frequency distribution with π/2. For other value of α, the fractional Fourier transform rotates the time–frequency distribution according to α. The following figure shows the results of the fractional Fourier transform with different values of α.

Time/frequency distribution of fractional Fourier transform

Application

Fractional Fourier transform can be used in time frequency analysis and DSP.[19] It is useful to filter noise, but with the condition that it does not overlap with the desired signal in the time–frequency domain. Consider the following example. We cannot apply a filter directly to eliminate the noise, but with the help of the fractional Fourier transform, we can rotate the signal (including the desired signal and noise) first. We then apply a specific filter, which will allow only the desired signal to pass. Thus the noise will be removed completely. Then we use the fractional Fourier transform again to rotate the signal back and we can get the desired signal.

Fractional Fourier transform in DSP

Thus, using just truncation in the time domain, or equivalently low-pass filters in the frequency domain, one can cut out any convex set in time–frequency space. In contrast, using time domain or frequency domain tools without a fractional Fourier transform would only allow cutting out rectangles parallel to the axes.

Fractional Fourier transforms also have applications in quantum physics. For example, they are used to formulate entropic uncertainty relations,[20] in high-dimensional quantum key distribution schemes with single photons,[21] and in observing spatial entanglement of photon pairs.[22]

They are also useful in the design of optical systems and for optimizing holographic storage efficiency.[23][24]

See also

Other time–frequency transforms:

References

  1. ^ Condon, Edward U. (1937). "Immersion of the Fourier transform in a continuous group of functional transformations". Proc. Natl. Acad. Sci. USA. 23 (3): 158–164. Bibcode:1937PNAS...23..158C. doi:10.1073/pnas.23.3.158. PMC 1076889. PMID 16588141.
  2. ^ Namias, V. (1980). "The fractional order Fourier transform and its application to quantum mechanics". IMA Journal of Applied Mathematics. 25 (3): 241–265. doi:10.1093/imamat/25.3.241.
  3. ^ Wiener, N. (April 1929). "Hermitian Polynomials and Fourier Analysis". Journal of Mathematics and Physics. 8 (1–4): 70–73. doi:10.1002/sapm19298170.
  4. ^ Almeida, Luís B. (1994). "The fractional Fourier transform and time–frequency representations". IEEE Trans. Signal Process. 42 (11): 3084–3091. Bibcode:1994ITSP...42.3084A. doi:10.1109/78.330368. S2CID 29757211.
  5. ^ Tao, Ran; Deng, Bing; Zhang, Wei-Qiang; Wang, Yue (2008). "Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain". IEEE Transactions on Signal Processing. 56 (1): 158–171. Bibcode:2008ITSP...56..158T. doi:10.1109/TSP.2007.901666. S2CID 7001222.
  6. ^ Bhandari, A.; Marziliano, P. (2010). "Sampling and reconstruction of sparse signals in fractional Fourier domain". IEEE Signal Processing Letters. 17 (3): 221–224. Bibcode:2010ISPL...17..221B. doi:10.1109/LSP.2009.2035242. hdl:10356/92280. S2CID 11959415.
  7. ^ Bailey, D. H.; Swarztrauber, P. N. (1991). "The fractional Fourier transform and applications". SIAM Review. 33 (3): 389–404. doi:10.1137/1033097. (Note that this article refers to the chirp-z transform variant, not the FRFT.)
  8. ^ Formally, this formula is only valid when the input function is in a sufficiently nice space (such as or Schwartz space), and is defined via a density argument in the general case.
  9. ^ Missbauer, Andreas (2012). Gabor Frames and the Fractional Fourier Transform (PDF) (MSc). University of Vienna. Archived from the original (PDF) on 3 November 2018. Retrieved 3 November 2018.
  10. ^ If α is an integer multiple of π, then the cotangent and cosecant functions above diverge. This apparent divergence can be handled by taking the limit in the sense of tempered distributions, and leads to a Dirac delta function in the integrand. This approach is consistent with the intuition that, since must be simply f(t) or f(−t) for α an even or odd multiple of π respectively.
  11. ^ An elementary recipe, using the contangent function, and its (multi-valued) inverse, for in terms of and exists.
  12. ^ Candan, Kutay & Ozaktas 2000.
  13. ^ Ozaktas, Zalevsky & Kutay 2001, Chapter 6.
  14. ^ Somma, Rolando D. (2016). "Quantum simulations of one dimensional quantum systems". Quantum Information and Computation. 16: 1125–1168. arXiv:1503.06319v2.
  15. ^ Shi, Jun; Zhang, NaiTong; Liu, Xiaoping (June 2012). "A novel fractional wavelet transform and its applications". Sci. China Inf. Sci. 55 (6): 1270–1279. doi:10.1007/s11432-011-4320-x. S2CID 3772011.
  16. ^ a b De Bie, Hendrik (1 September 2008). "Fourier transform and related integral transforms in superspace". Journal of Mathematical Analysis and Applications. 345 (1): 147–164. arXiv:0805.1918. Bibcode:2008JMAA..345..147D. doi:10.1016/j.jmaa.2008.03.047. S2CID 17066592.
  17. ^ Fan, Hong-yi; Hu, Li-yun (2009). "Optical transformation from chirplet to fractional Fourier transformation kernel". Journal of Modern Optics. 56 (11): 1227–1229. arXiv:0902.1800. Bibcode:2009JMOp...56.1227F. doi:10.1080/09500340903033690. S2CID 118463188.
  18. ^ Klappenecker, Andreas; Roetteler, Martin (January 2002). "Engineering Functional Quantum Algorithms". Physical Review A. 67 (1): 010302. arXiv:quant-ph/0208130. doi:10.1103/PhysRevA.67.010302. S2CID 14501861.
  19. ^ Sejdić, Ervin; Djurović, Igor; Stanković, LJubiša (June 2011). "Fractional Fourier transform as a signal processing tool: An overview of recent developments". Signal Processing. 91 (6): 1351–1369. doi:10.1016/j.sigpro.2010.10.008. S2CID 14203403.
  20. ^ Huang, Yichen (24 May 2011). "Entropic uncertainty relations in multidimensional position and momentum spaces". Physical Review A. 83 (5): 052124. arXiv:1101.2944. Bibcode:2011PhRvA..83e2124H. doi:10.1103/PhysRevA.83.052124. S2CID 119243096.
  21. ^ Walborn, SP; Lemelle, DS; Tasca, DS; Souto Ribeiro, PH (13 June 2008). "Schemes for quantum key distribution with higher-order alphabets using single-photon fractional Fourier optics". Physical Review A. 77 (6): 062323. doi:10.1103/PhysRevA.77.062323.
  22. ^ Tasca, DS; Walborn, SP; Souto Ribeiro, PH; Toscano, F (8 July 2008). "Detection of transverse entanglement in phase space". Physical Review A. 78 (1): 010304(R). arXiv:0806.3044. doi:10.1103/PhysRevA.78.010304. S2CID 118607762.
  23. ^ Pégard, Nicolas C.; Fleischer, Jason W. (2011). "Optimizing holographic data storage using a fractional Fourier transform". Optics Letters. 36 (13): 2551–2553. Bibcode:2011OptL...36.2551P. doi:10.1364/OL.36.002551. PMID 21725476.
  24. ^ Jagoszewski, Eugeniusz (1998). "Fractional Fourier transform in optical setups" (PDF). Optica Applicata. XXVIII (3): 227–237.

Bibliography

Read other articles:

Protein-coding gene in the species Homo sapiens KCNK4Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes3UM7, 4I9W, 4RUE, 4RUF, 4WFE, 4WFF, 4WFG, 4WFHIdentifiersAliasesKCNK4, K2p4.1, TRAAK, TRAAK1, potassium two pore domain channel subfamily K member 4, FHEIGExternal IDsOMIM: 605720 MGI: 1298234 HomoloGene: 7391 GeneCards: KCNK4 Gene location (Human)Chr.Chromosome 11 (human)[1]Band11q13.1Start64,291,302 bp[1]End64,300,031 bp[1]Gene location (Mouse)Chr.C…

Come leggere il tassoboxTetrapodi Rappresentanti dei gruppi esistenti di tetrapoda, (in senso orario dall'alto verso il basso): una rana (genere Pelophylax, un lissamphibio), un'hoatzin, uno scinco (due sauropsidi), e un topo (un sinapside) Classificazione scientifica Dominio Eukaryota Regno Animalia Phylum Chordata (clado) Craniata Subphylum Vertebrata Infraphylum Gnathostomata Clado Eugnathostomata Clado Teleostomi Superclasse Tetrapoda Gaffney, 1930 Sottogruppi Batrachomorpha / Amphibia Lissa…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Samuel Morse – berita · surat kabar · buku · cendekiawan · JSTOR Samuel Morse (1791-1872) Untuk tokoh perkeretaapian Amerika Serikat, lihat Samuel Morse Fenton. Samuel Finley Breese Morse adalah seorang pel…

French poet, essayist, and editor (1873–1914) Charles PéguyPortrait of Charles Péguy, by Jean-Pierre Laurens, 1908BornCharles-Pierre Péguy(1873-01-07)7 January 1873Orléans, Third French RepublicDied5 September 1914(1914-09-05) (aged 41)Villeroy, FranceOccupationWriterAlma materÉcole Normale SupérieureSignature Charles Pierre Péguy (French: [ʃaʁl peɡi]; 7 January 1873 – 5 September 1914) was a French poet, essayist, and editor. His two main philosophies were social…

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁地…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要擴充。 (2013年1月1日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目需要补充更多来源。 (2013年1月1日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标…

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالياب…

Canadian filmmaker and artist Bruce LaBruceLaBruce in 2011Born (1964-01-03) January 3, 1964 (age 60)Southampton, Ontario, CanadaOccupation(s)Actor, writer, filmmaker, photographer, underground adult directorYears active1987–presentWebsitebrucelabruce.com Bruce LaBruce (born January 3, 1964)[1] is a Canadian artist,[2] writer, filmmaker, photographer, and underground director based in Toronto. Life and career LaBruce was born in Tiverton, Ontario.[3] He has cla…

Duomo Il mezzanino della stazione M3Stazione dellametropolitana di Milano GestoreATM Inaugurazione1964 (M1)1990 (M3) Statoin uso Linea Localizzazionepiazza del Duomo, Milano Zona tariffariaMi1 Tipologiastazione sotterranea, passante, con due binari in canna singola e due banchine laterali (M1)stazione sotterranea, passante, con due binari e relative banchine in due canne sovrapposte (M3) Interscambiotram urbaniautobus urbani DintorniDuomo di MilanoGalleria Vittorio Emanuele IIPalazzo Reale Acces…

American economist This biography of a living person relies too much on references to primary sources. Please help by adding secondary or tertiary sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately, especially if potentially libelous or harmful.Find sources: John J. Siegfried – news · newspapers · books · scholar · JSTOR (January 2019) (Learn how and when to remove this message) John J. Siegf…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助讀…

Halaman ini berisi artikel tentang kota di Sumatera Utara. Untuk tumbuhan, lihat Binjai. Untuk kegunaan lain, lihat Binjai (disambiguasi). Kota BinjaiKotaTranskripsi bahasa daerah • Abjad Jawiكوتا بنجايGapura Selamat Datang di Kota Binjai LambangJulukan: Kota RambutanPetaKota BinjaiPetaTampilkan peta SumatraKota BinjaiKota Binjai (Indonesia)Tampilkan peta IndonesiaKoordinat: 3°36′00″N 98°29′07″E / 3.6°N 98.4853°E / 3.6; 98.4853Ne…

عمري شارون معلومات شخصية الميلاد 19 أغسطس 1964 (60 سنة)[1]  إسرائيل[1]  مواطنة إسرائيل  الأب أرئيل شارون  مناصب عضو الكنيست[2]   عضو خلال الفترة17 فبراير 2003  – 23 نوفمبر 2005  فترة برلمانية دورة الكنيست السادسة عشر  [لغات أخرى]‏  عضو الكنيست[3] &#…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 17th Cavalry Regiment – news · newspapers · books · scholar · JSTOR (December 2012) (Learn how and when to remove this message) 17th Cavalry Regiment17th Cavalry Regiment coat of armsActive1916-19211957-Country United StatesBranch United States ArmyTypeC…

Stadion Rheinpark LokasiLokasiVaduz, LiechtensteinKoordinat47°08′25″N 9°30′37″E / 47.14028°N 9.51028°E / 47.14028; 9.51028Koordinat: 47°08′25″N 9°30′37″E / 47.14028°N 9.51028°E / 47.14028; 9.51028KonstruksiMulai pembangunan1 Juli 1997Dibuka31 Juli 1998Diperbesar2006Biaya pembuatanCHF 19 jutaData teknisKapasitas7,584 (5,873 tempat duduk)Ukuran lapangan105 x 68 mPemakaiFC VaduzTim nasional sepak bola LiechtensteinSunting kotak…

一中同表,是台灣处理海峡两岸关系问题的一种主張,認為中华人民共和国與中華民國皆是“整個中國”的一部份,二者因為兩岸現狀,在各自领域有完整的管辖权,互不隶属,同时主張,二者合作便可以搁置对“整个中國”的主权的争议,共同承認雙方皆是中國的一部份,在此基礎上走向終極統一。最早是在2004年由台灣大學政治学教授張亞中所提出,希望兩岸由一中各表的…

For other uses, see One Last Ride (disambiguation). 12th and 13th episodes of the 7th season of Parks and Recreation One Last RideParks and Recreation episodesEpisode nos.Season 7Episodes 12, 13Directed byMichael SchurWritten byMichael SchurAmy PoehlerProduction code712/713Original air dateFebruary 24, 2015 (2015-02-24)Guest appearances Rashida Jones as Ann Perkins Rob Lowe as Chris Traeger Ben Schwartz as Jean-Ralphio Saperstein Christie Brinkley as Gayle Gergich Alison Beck…

Southeast Asian salafist organization founded in 1993 For the Egyptian organization of the same name, see Al-Jama'a al-Islamiyya. For other uses, see Al-Jama'a al-Islamiyya (disambiguation). Not to be confused with Jamaat-e-Islami (disambiguation). Jemaah IslamiyahJihadist flag used by Jemaah IslamiyahLeader Abdullah Sungkar (1993–1999) †[1] Abu Bakar Baasyir (1999–2003) (Imprisoned, later released)[1] Abu Rusdan (2003–2004) POW[1] Adung (2004–2005) POW…

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Gunung Rinjani – berita · surat kabar · buku · cendekiawan · JSTOR (Mei 2024)Gunung RinjaniGunung Rinjani dan sabana di kaki gunung.Titik tertinggiKetinggian3.726 m (12.224 kaki)[1]Masuk dalam daftarUltr…

Dr. H.Abbas SaidS.H., M.H. Wakil Ketua Komisi Yudisial Republik IndonesiaMasa jabatan1 Juli 2013 – 18 Desember 2015PendahuluImam Anshori SalehPenggantiSukma ViolettaAnggota Komisi Yudisial Republik IndonesiaMasa jabatan20 Desember 2010 – 18 Desember 2015[1]Hakim Mahkamah Agung Republik IndonesiaMasa jabatan14 September 2004 – 20 Desember 2012 Informasi pribadiLahir3 April 1944 (umur 80) Kabupaten Kolaka, Sulawesi TenggaraSuami/istriSyarifah MasnonAna…