Mathematical process of finding the derivative of a trigonometric function
Function
Derivative
sin
(
x
)
{\displaystyle \sin(x)}
cos
(
x
)
{\displaystyle \cos(x)}
cos
(
x
)
{\displaystyle \cos(x)}
−
sin
(
x
)
{\displaystyle -\sin(x)}
tan
(
x
)
{\displaystyle \tan(x)}
sec
2
(
x
)
{\displaystyle \sec ^{2}(x)}
cot
(
x
)
{\displaystyle \cot(x)}
−
csc
2
(
x
)
{\displaystyle -\csc ^{2}(x)}
sec
(
x
)
{\displaystyle \sec(x)}
sec
(
x
)
tan
(
x
)
{\displaystyle \sec(x)\tan(x)}
csc
(
x
)
{\displaystyle \csc(x)}
−
csc
(
x
)
cot
(
x
)
{\displaystyle -\csc(x)\cot(x)}
arcsin
(
x
)
{\displaystyle \arcsin(x)}
1
1
−
x
2
{\displaystyle {\frac {1}{\sqrt {1-x^{2}}}}}
arccos
(
x
)
{\displaystyle \arccos(x)}
−
1
1
−
x
2
{\displaystyle -{\frac {1}{\sqrt {1-x^{2}}}}}
arctan
(
x
)
{\displaystyle \arctan(x)}
1
x
2
+
1
{\displaystyle {\frac {1}{x^{2}+1}}}
arccot
(
x
)
{\displaystyle \operatorname {arccot}(x)}
−
1
x
2
+
1
{\displaystyle -{\frac {1}{x^{2}+1}}}
arcsec
(
x
)
{\displaystyle \operatorname {arcsec}(x)}
1
|
x
|
x
2
−
1
{\displaystyle {\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
arccsc
(
x
)
{\displaystyle \operatorname {arccsc}(x)}
−
1
|
x
|
x
2
−
1
{\displaystyle -{\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function , or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′ (a ) = cos(a ), meaning that the rate of change of sin(x ) at a particular angle x = a is given by the cosine of that angle.
All derivatives of circular trigonometric functions can be found from those of sin(x ) and cos(x ) by means of the quotient rule applied to functions such as tan(x ) = sin(x )/cos(x ). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation .
Proofs of derivatives of trigonometric functions
Limit of sin(θ)/θ as θ tends to 0
Circle, centre O , radius 1
The diagram at right shows a circle with centre O and radius r = 1. Let two radii OA and OB make an arc of θ radians. Since we are considering the limit as θ tends to zero, we may assume θ is a small positive number, say 0 < θ < 1 / 2 π in the first quadrant.
In the diagram, let R 1 be the triangle OAB , R 2 the circular sector OAB , and R 3 the triangle OAC .
The area of triangle OAB is:
A
r
e
a
(
R
1
)
=
1
2
|
O
A
|
|
O
B
|
sin
θ
=
1
2
sin
θ
.
{\displaystyle \mathrm {Area} (R_{1})={\tfrac {1}{2}}\ |OA|\ |OB|\sin \theta ={\tfrac {1}{2}}\sin \theta \,.}
The area of the circular sector OAB is:
A
r
e
a
(
R
2
)
=
1
2
θ
.
{\displaystyle \mathrm {Area} (R_{2})={\tfrac {1}{2}}\theta \,.}
The area of the triangle OAC is given by:
A
r
e
a
(
R
3
)
=
1
2
|
O
A
|
|
A
C
|
=
1
2
tan
θ
.
{\displaystyle \mathrm {Area} (R_{3})={\tfrac {1}{2}}\ |OA|\ |AC|={\tfrac {1}{2}}\tan \theta \,.}
Since each region is contained in the next, one has:
Area
(
R
1
)
<
Area
(
R
2
)
<
Area
(
R
3
)
⟹
1
2
sin
θ
<
1
2
θ
<
1
2
tan
θ
.
{\displaystyle {\text{Area}}(R_{1})<{\text{Area}}(R_{2})<{\text{Area}}(R_{3})\implies {\tfrac {1}{2}}\sin \theta <{\tfrac {1}{2}}\theta <{\tfrac {1}{2}}\tan \theta \,.}
Moreover, since sin θ > 0 in the first quadrant, we may divide through by 1 / 2 sin θ , giving:
1
<
θ
sin
θ
<
1
cos
θ
⟹
1
>
sin
θ
θ
>
cos
θ
.
{\displaystyle 1<{\frac {\theta }{\sin \theta }}<{\frac {1}{\cos \theta }}\implies 1>{\frac {\sin \theta }{\theta }}>\cos \theta \,.}
In the last step we took the reciprocals of the three positive terms, reversing the inequities.
Squeeze: The curves y = 1 and y = cos θ shown in red, the curve y = sin(θ )/θ shown in blue.
We conclude that for 0 < θ < 1 / 2 π, the quantity sin(θ )/θ is always less than 1 and always greater than cos(θ). Thus, as θ gets closer to 0, sin(θ )/θ is "squeezed " between a ceiling at height 1 and a floor at height cos θ , which rises towards 1; hence sin(θ )/θ must tend to 1 as θ tends to 0 from the positive side:
lim
θ
→
0
+
sin
θ
θ
=
1
.
{\displaystyle \lim _{\theta \to 0^{+}}{\frac {\sin \theta }{\theta }}=1\,.}
For the case where θ is a small negative number –1 / 2 π < θ < 0, we use the fact that sine is an odd function :
lim
θ
→
0
−
sin
θ
θ
=
lim
θ
→
0
+
sin
(
−
θ
)
−
θ
=
lim
θ
→
0
+
−
sin
θ
−
θ
=
lim
θ
→
0
+
sin
θ
θ
=
1
.
{\displaystyle \lim _{\theta \to 0^{-}}\!{\frac {\sin \theta }{\theta }}\ =\ \lim _{\theta \to 0^{+}}\!{\frac {\sin(-\theta )}{-\theta }}\ =\ \lim _{\theta \to 0^{+}}\!{\frac {-\sin \theta }{-\theta }}\ =\ \lim _{\theta \to 0^{+}}\!{\frac {\sin \theta }{\theta }}\ =\ 1\,.}
Limit of (cos(θ)-1)/θ as θ tends to 0
The last section enables us to calculate this new limit relatively easily. This is done by employing a simple trick. In this calculation, the sign of θ is unimportant.
lim
θ
→
0
cos
θ
−
1
θ
=
lim
θ
→
0
(
cos
θ
−
1
θ
)
(
cos
θ
+
1
cos
θ
+
1
)
=
lim
θ
→
0
cos
2
θ
−
1
θ
(
cos
θ
+
1
)
.
{\displaystyle \lim _{\theta \to 0}\,{\frac {\cos \theta -1}{\theta }}\ =\ \lim _{\theta \to 0}\left({\frac {\cos \theta -1}{\theta }}\right)\!\!\left({\frac {\cos \theta +1}{\cos \theta +1}}\right)\ =\ \lim _{\theta \to 0}\,{\frac {\cos ^{2}\!\theta -1}{\theta \,(\cos \theta +1)}}.}
Using cos2 θ – 1 = –sin2 θ ,
the fact that the limit of a product is the product of limits, and the limit result from the previous section, we find that:
lim
θ
→
0
cos
θ
−
1
θ
=
lim
θ
→
0
−
sin
2
θ
θ
(
cos
θ
+
1
)
=
(
−
lim
θ
→
0
sin
θ
θ
)
(
lim
θ
→
0
sin
θ
cos
θ
+
1
)
=
(
−
1
)
(
0
2
)
=
0
.
{\displaystyle \lim _{\theta \to 0}\,{\frac {\cos \theta -1}{\theta }}\ =\ \lim _{\theta \to 0}\,{\frac {-\sin ^{2}\theta }{\theta (\cos \theta +1)}}\ =\ \left(-\lim _{\theta \to 0}{\frac {\sin \theta }{\theta }}\right)\!\left(\lim _{\theta \to 0}\,{\frac {\sin \theta }{\cos \theta +1}}\right)\ =\ (-1)\left({\frac {0}{2}}\right)=0\,.}
Limit of tan(θ)/θ as θ tends to 0
Using the limit for the sine function, the fact that the tangent function is odd, and the fact that the limit of a product is the product of limits, we find:
lim
θ
→
0
tan
θ
θ
=
(
lim
θ
→
0
sin
θ
θ
)
(
lim
θ
→
0
1
cos
θ
)
=
(
1
)
(
1
)
=
1
.
{\displaystyle \lim _{\theta \to 0}{\frac {\tan \theta }{\theta }}\ =\ \left(\lim _{\theta \to 0}{\frac {\sin \theta }{\theta }}\right)\!\left(\lim _{\theta \to 0}{\frac {1}{\cos \theta }}\right)\ =\ (1)(1)\ =\ 1\,.}
Derivative of the sine function
We calculate the derivative of the sine function from the limit definition :
d
d
θ
sin
θ
=
lim
δ
→
0
sin
(
θ
+
δ
)
−
sin
θ
δ
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\sin \theta =\lim _{\delta \to 0}{\frac {\sin(\theta +\delta )-\sin \theta }{\delta }}.}
Using the angle addition formula sin(α+β) = sin α cos β + sin β cos α , we have:
d
d
θ
sin
θ
=
lim
δ
→
0
sin
θ
cos
δ
+
sin
δ
cos
θ
−
sin
θ
δ
=
lim
δ
→
0
(
sin
δ
δ
cos
θ
+
cos
δ
−
1
δ
sin
θ
)
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\sin \theta =\lim _{\delta \to 0}{\frac {\sin \theta \cos \delta +\sin \delta \cos \theta -\sin \theta }{\delta }}=\lim _{\delta \to 0}\left({\frac {\sin \delta }{\delta }}\cos \theta +{\frac {\cos \delta -1}{\delta }}\sin \theta \right).}
Using the limits for the sine and cosine functions:
d
d
θ
sin
θ
=
(
1
)
cos
θ
+
(
0
)
sin
θ
=
cos
θ
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\sin \theta =(1)\cos \theta +(0)\sin \theta =\cos \theta \,.}
Derivative of the cosine function
From the definition of derivative
We again calculate the derivative of the cosine function from the limit definition:
d
d
θ
cos
θ
=
lim
δ
→
0
cos
(
θ
+
δ
)
−
cos
θ
δ
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\cos \theta =\lim _{\delta \to 0}{\frac {\cos(\theta +\delta )-\cos \theta }{\delta }}.}
Using the angle addition formula cos(α+β) = cos α cos β – sin α sin β , we have:
d
d
θ
cos
θ
=
lim
δ
→
0
cos
θ
cos
δ
−
sin
θ
sin
δ
−
cos
θ
δ
=
lim
δ
→
0
(
cos
δ
−
1
δ
cos
θ
−
sin
δ
δ
sin
θ
)
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\cos \theta =\lim _{\delta \to 0}{\frac {\cos \theta \cos \delta -\sin \theta \sin \delta -\cos \theta }{\delta }}=\lim _{\delta \to 0}\left({\frac {\cos \delta -1}{\delta }}\cos \theta \,-\,{\frac {\sin \delta }{\delta }}\sin \theta \right).}
Using the limits for the sine and cosine functions:
d
d
θ
cos
θ
=
(
0
)
cos
θ
−
(
1
)
sin
θ
=
−
sin
θ
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\cos \theta =(0)\cos \theta -(1)\sin \theta =-\sin \theta \,.}
From the chain rule
To compute the derivative of the cosine function from the chain rule, first observe the following three facts:
cos
θ
=
sin
(
π
2
−
θ
)
{\displaystyle \cos \theta =\sin \left({\tfrac {\pi }{2}}-\theta \right)}
sin
θ
=
cos
(
π
2
−
θ
)
{\displaystyle \sin \theta =\cos \left({\tfrac {\pi }{2}}-\theta \right)}
d
d
θ
sin
θ
=
cos
θ
{\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\sin \theta =\cos \theta }
The first and the second are trigonometric identities , and the third is proven above. Using these three facts, we can write the following,
d
d
θ
cos
θ
=
d
d
θ
sin
(
π
2
−
θ
)
{\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\cos \theta ={\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\sin \left({\tfrac {\pi }{2}}-\theta \right)}
We can differentiate this using the chain rule . Letting
f
(
x
)
=
sin
x
,
g
(
θ
)
=
π
2
−
θ
{\displaystyle f(x)=\sin x,\ \ g(\theta )={\tfrac {\pi }{2}}-\theta }
, we have:
d
d
θ
f
(
g
(
θ
)
)
=
f
′
(
g
(
θ
)
)
⋅
g
′
(
θ
)
=
cos
(
π
2
−
θ
)
⋅
(
0
−
1
)
=
−
sin
θ
{\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}f\!\left(g\!\left(\theta \right)\right)=f^{\prime }\!\left(g\!\left(\theta \right)\right)\cdot g^{\prime }\!\left(\theta \right)=\cos \left({\tfrac {\pi }{2}}-\theta \right)\cdot (0-1)=-\sin \theta }
.
Therefore, we have proven that
d
d
θ
cos
θ
=
−
sin
θ
{\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\cos \theta =-\sin \theta }
.
Derivative of the tangent function
From the definition of derivative
To calculate the derivative of the tangent function tan θ , we use first principles . By definition:
d
d
θ
tan
θ
=
lim
δ
→
0
(
tan
(
θ
+
δ
)
−
tan
θ
δ
)
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =\lim _{\delta \to 0}\left({\frac {\tan(\theta +\delta )-\tan \theta }{\delta }}\right).}
Using the well-known angle formula tan(α+β) = (tan α + tan β) / (1 - tan α tan β) , we have:
d
d
θ
tan
θ
=
lim
δ
→
0
[
tan
θ
+
tan
δ
1
−
tan
θ
tan
δ
−
tan
θ
δ
]
=
lim
δ
→
0
[
tan
θ
+
tan
δ
−
tan
θ
+
tan
2
θ
tan
δ
δ
(
1
−
tan
θ
tan
δ
)
]
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =\lim _{\delta \to 0}\left[{\frac {{\frac {\tan \theta +\tan \delta }{1-\tan \theta \tan \delta }}-\tan \theta }{\delta }}\right]=\lim _{\delta \to 0}\left[{\frac {\tan \theta +\tan \delta -\tan \theta +\tan ^{2}\theta \tan \delta }{\delta \left(1-\tan \theta \tan \delta \right)}}\right].}
Using the fact that the limit of a product is the product of the limits:
d
d
θ
tan
θ
=
lim
δ
→
0
tan
δ
δ
×
lim
δ
→
0
(
1
+
tan
2
θ
1
−
tan
θ
tan
δ
)
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =\lim _{\delta \to 0}{\frac {\tan \delta }{\delta }}\times \lim _{\delta \to 0}\left({\frac {1+\tan ^{2}\theta }{1-\tan \theta \tan \delta }}\right).}
Using the limit for the tangent function, and the fact that tan δ tends to 0 as δ tends to 0:
d
d
θ
tan
θ
=
1
×
1
+
tan
2
θ
1
−
0
=
1
+
tan
2
θ
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =1\times {\frac {1+\tan ^{2}\theta }{1-0}}=1+\tan ^{2}\theta .}
We see immediately that:
d
d
θ
tan
θ
=
1
+
sin
2
θ
cos
2
θ
=
cos
2
θ
+
sin
2
θ
cos
2
θ
=
1
cos
2
θ
=
sec
2
θ
.
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =1+{\frac {\sin ^{2}\theta }{\cos ^{2}\theta }}={\frac {\cos ^{2}\theta +\sin ^{2}\theta }{\cos ^{2}\theta }}={\frac {1}{\cos ^{2}\theta }}=\sec ^{2}\theta \,.}
From the quotient rule
One can also compute the derivative of the tangent function using the quotient rule .
d
d
θ
tan
θ
=
d
d
θ
sin
θ
cos
θ
=
(
sin
θ
)
′
⋅
cos
θ
−
sin
θ
⋅
(
cos
θ
)
′
cos
2
θ
=
cos
2
θ
+
sin
2
θ
cos
2
θ
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\tan \theta ={\frac {\operatorname {d} }{\operatorname {d} \!\theta }}{\frac {\sin \theta }{\cos \theta }}={\frac {\left(\sin \theta \right)^{\prime }\cdot \cos \theta -\sin \theta \cdot \left(\cos \theta \right)^{\prime }}{\cos ^{2}\theta }}={\frac {\cos ^{2}\theta +\sin ^{2}\theta }{\cos ^{2}\theta }}}
The numerator can be simplified to 1 by the Pythagorean identity , giving us,
1
cos
2
θ
=
sec
2
θ
{\displaystyle {\frac {1}{\cos ^{2}\theta }}=\sec ^{2}\theta }
Therefore,
d
d
θ
tan
θ
=
sec
2
θ
{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\tan \theta =\sec ^{2}\theta }
Proofs of derivatives of inverse trigonometric functions
The following derivatives are found by setting a variable y equal to the inverse trigonometric function that we wish to take the derivative of. Using implicit differentiation and then solving for dy /dx , the derivative of the inverse function is found in terms of y . To convert dy /dx back into being in terms of x , we can draw a reference triangle on the unit circle, letting θ be y. Using the Pythagorean theorem and the definition of the regular trigonometric functions, we can finally express dy /dx in terms of x .
Differentiating the inverse sine function
We let
y
=
arcsin
x
{\displaystyle y=\arcsin x\,\!}
Where
−
π
2
≤
y
≤
π
2
{\displaystyle -{\frac {\pi }{2}}\leq y\leq {\frac {\pi }{2}}}
Then
sin
y
=
x
{\displaystyle \sin y=x\,\!}
Taking the derivative with respect to
x
{\displaystyle x}
on both sides and solving for dy/dx:
d
d
x
sin
y
=
d
d
x
x
{\displaystyle {d \over dx}\sin y={d \over dx}x}
cos
y
⋅
d
y
d
x
=
1
{\displaystyle \cos y\cdot {dy \over dx}=1\,\!}
Substituting
cos
y
=
1
−
sin
2
y
{\displaystyle \cos y={\sqrt {1-\sin ^{2}y}}}
in from above,
1
−
sin
2
y
⋅
d
y
d
x
=
1
{\displaystyle {\sqrt {1-\sin ^{2}y}}\cdot {dy \over dx}=1}
Substituting
x
=
sin
y
{\displaystyle x=\sin y}
in from above,
1
−
x
2
⋅
d
y
d
x
=
1
{\displaystyle {\sqrt {1-x^{2}}}\cdot {dy \over dx}=1}
d
y
d
x
=
1
1
−
x
2
{\displaystyle {dy \over dx}={\frac {1}{\sqrt {1-x^{2}}}}}
Differentiating the inverse cosine function
We let
y
=
arccos
x
{\displaystyle y=\arccos x\,\!}
Where
0
≤
y
≤
π
{\displaystyle 0\leq y\leq \pi }
Then
cos
y
=
x
{\displaystyle \cos y=x\,\!}
Taking the derivative with respect to
x
{\displaystyle x}
on both sides and solving for dy/dx:
d
d
x
cos
y
=
d
d
x
x
{\displaystyle {d \over dx}\cos y={d \over dx}x}
−
sin
y
⋅
d
y
d
x
=
1
{\displaystyle -\sin y\cdot {dy \over dx}=1}
Substituting
sin
y
=
1
−
cos
2
y
{\displaystyle \sin y={\sqrt {1-\cos ^{2}y}}\,\!}
in from above, we get
−
1
−
cos
2
y
⋅
d
y
d
x
=
1
{\displaystyle -{\sqrt {1-\cos ^{2}y}}\cdot {dy \over dx}=1}
Substituting
x
=
cos
y
{\displaystyle x=\cos y\,\!}
in from above, we get
−
1
−
x
2
⋅
d
y
d
x
=
1
{\displaystyle -{\sqrt {1-x^{2}}}\cdot {dy \over dx}=1}
d
y
d
x
=
−
1
1
−
x
2
{\displaystyle {dy \over dx}=-{\frac {1}{\sqrt {1-x^{2}}}}}
Alternatively, once the derivative of
arcsin
x
{\displaystyle \arcsin x}
is established, the derivative of
arccos
x
{\displaystyle \arccos x}
follows immediately by differentiating the identity
arcsin
x
+
arccos
x
=
π
/
2
{\displaystyle \arcsin x+\arccos x=\pi /2}
so that
(
arccos
x
)
′
=
−
(
arcsin
x
)
′
{\displaystyle (\arccos x)'=-(\arcsin x)'}
.
Differentiating the inverse tangent function
We let
y
=
arctan
x
{\displaystyle y=\arctan x\,\!}
Where
−
π
2
<
y
<
π
2
{\displaystyle -{\frac {\pi }{2}}<y<{\frac {\pi }{2}}}
Then
tan
y
=
x
{\displaystyle \tan y=x\,\!}
Taking the derivative with respect to
x
{\displaystyle x}
on both sides and solving for dy/dx:
d
d
x
tan
y
=
d
d
x
x
{\displaystyle {d \over dx}\tan y={d \over dx}x}
Left side:
d
d
x
tan
y
=
sec
2
y
⋅
d
y
d
x
=
(
1
+
tan
2
y
)
d
y
d
x
{\displaystyle {d \over dx}\tan y=\sec ^{2}y\cdot {dy \over dx}=(1+\tan ^{2}y){dy \over dx}}
using the Pythagorean identity
Right side:
d
d
x
x
=
1
{\displaystyle {d \over dx}x=1}
Therefore,
(
1
+
tan
2
y
)
d
y
d
x
=
1
{\displaystyle (1+\tan ^{2}y){dy \over dx}=1}
Substituting
x
=
tan
y
{\displaystyle x=\tan y\,\!}
in from above, we get
(
1
+
x
2
)
d
y
d
x
=
1
{\displaystyle (1+x^{2}){dy \over dx}=1}
d
y
d
x
=
1
1
+
x
2
{\displaystyle {dy \over dx}={\frac {1}{1+x^{2}}}}
Differentiating the inverse cotangent function
We let
y
=
arccot
x
{\displaystyle y=\operatorname {arccot} x}
where
0
<
y
<
π
{\displaystyle 0<y<\pi }
. Then
cot
y
=
x
{\displaystyle \cot y=x}
Taking the derivative with respect to
x
{\displaystyle x}
on both sides and solving for dy/dx:
d
d
x
cot
y
=
d
d
x
x
{\displaystyle {\frac {d}{dx}}\cot y={\frac {d}{dx}}x}
Left side:
d
d
x
cot
y
=
−
csc
2
y
⋅
d
y
d
x
=
−
(
1
+
cot
2
y
)
d
y
d
x
{\displaystyle {d \over dx}\cot y=-\csc ^{2}y\cdot {dy \over dx}=-(1+\cot ^{2}y){dy \over dx}}
using the Pythagorean identity
Right side:
d
d
x
x
=
1
{\displaystyle {d \over dx}x=1}
Therefore,
−
(
1
+
cot
2
y
)
d
y
d
x
=
1
{\displaystyle -(1+\cot ^{2}y){\frac {dy}{dx}}=1}
Substituting
x
=
cot
y
{\displaystyle x=\cot y}
,
−
(
1
+
x
2
)
d
y
d
x
=
1
{\displaystyle -(1+x^{2}){\frac {dy}{dx}}=1}
d
y
d
x
=
−
1
1
+
x
2
{\displaystyle {\frac {dy}{dx}}=-{\frac {1}{1+x^{2}}}}
Alternatively, as the derivative of
arctan
x
{\displaystyle \arctan x}
is derived as shown above, then using the identity
arctan
x
+
arccot
x
=
π
2
{\displaystyle \arctan x+\operatorname {arccot} x={\dfrac {\pi }{2}}}
follows immediately that
d
d
x
arccot
x
=
d
d
x
(
π
2
−
arctan
x
)
=
−
1
1
+
x
2
{\displaystyle {\begin{aligned}{\dfrac {d}{dx}}\operatorname {arccot} x&={\dfrac {d}{dx}}\left({\dfrac {\pi }{2}}-\arctan x\right)\\&=-{\dfrac {1}{1+x^{2}}}\end{aligned}}}
Differentiating the inverse secant function
Using implicit differentiation
Let
y
=
arcsec
x
∣
|
x
|
≥
1
{\displaystyle y=\operatorname {arcsec} x\ \mid |x|\geq 1}
Then
x
=
sec
y
∣
y
∈
[
0
,
π
2
)
∪
(
π
2
,
π
]
{\displaystyle x=\sec y\mid \ y\in \left[0,{\frac {\pi }{2}}\right)\cup \left({\frac {\pi }{2}},\pi \right]}
d
x
d
y
=
sec
y
tan
y
=
|
x
|
x
2
−
1
{\displaystyle {\frac {dx}{dy}}=\sec y\tan y=|x|{\sqrt {x^{2}-1}}}
(The absolute value in the expression is necessary as the product of secant and tangent in the interval of y is always nonnegative, while the radical
x
2
−
1
{\displaystyle {\sqrt {x^{2}-1}}}
is always nonnegative by definition of the principal square root, so the remaining factor must also be nonnegative, which is achieved by using the absolute value of x.)
d
y
d
x
=
1
|
x
|
x
2
−
1
{\displaystyle {\frac {dy}{dx}}={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
Using the chain rule
Alternatively, the derivative of arcsecant may be derived from the derivative of arccosine using the chain rule .
Let
y
=
arcsec
x
=
arccos
(
1
x
)
{\displaystyle y=\operatorname {arcsec} x=\arccos \left({\frac {1}{x}}\right)}
Where
|
x
|
≥
1
{\displaystyle |x|\geq 1}
and
y
∈
[
0
,
π
2
)
∪
(
π
2
,
π
]
{\displaystyle y\in \left[0,{\frac {\pi }{2}}\right)\cup \left({\frac {\pi }{2}},\pi \right]}
Then, applying the chain rule to
arccos
(
1
x
)
{\displaystyle \arccos \left({\frac {1}{x}}\right)}
:
d
y
d
x
=
−
1
1
−
(
1
x
)
2
⋅
(
−
1
x
2
)
=
1
x
2
1
−
1
x
2
=
1
x
2
x
2
−
1
x
2
=
1
x
2
x
2
−
1
=
1
|
x
|
x
2
−
1
{\displaystyle {\frac {dy}{dx}}=-{\frac {1}{\sqrt {1-({\frac {1}{x}})^{2}}}}\cdot \left(-{\frac {1}{x^{2}}}\right)={\frac {1}{x^{2}{\sqrt {1-{\frac {1}{x^{2}}}}}}}={\frac {1}{x^{2}{\frac {\sqrt {x^{2}-1}}{\sqrt {x^{2}}}}}}={\frac {1}{{\sqrt {x^{2}}}{\sqrt {x^{2}-1}}}}={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
Differentiating the inverse cosecant function
Using implicit differentiation
Let
y
=
arccsc
x
∣
|
x
|
≥
1
{\displaystyle y=\operatorname {arccsc} x\ \mid |x|\geq 1}
Then
x
=
csc
y
∣
y
∈
[
−
π
2
,
0
)
∪
(
0
,
π
2
]
{\displaystyle x=\csc y\ \mid \ y\in \left[-{\frac {\pi }{2}},0\right)\cup \left(0,{\frac {\pi }{2}}\right]}
d
x
d
y
=
−
csc
y
cot
y
=
−
|
x
|
x
2
−
1
{\displaystyle {\frac {dx}{dy}}=-\csc y\cot y=-|x|{\sqrt {x^{2}-1}}}
(The absolute value in the expression is necessary as the product of cosecant and cotangent in the interval of y is always nonnegative, while the radical
x
2
−
1
{\displaystyle {\sqrt {x^{2}-1}}}
is always nonnegative by definition of the principal square root, so the remaining factor must also be nonnegative, which is achieved by using the absolute value of x.)
d
y
d
x
=
−
1
|
x
|
x
2
−
1
{\displaystyle {\frac {dy}{dx}}={\frac {-1}{|x|{\sqrt {x^{2}-1}}}}}
Using the chain rule
Alternatively, the derivative of arccosecant may be derived from the derivative of arcsine using the chain rule .
Let
y
=
arccsc
x
=
arcsin
(
1
x
)
{\displaystyle y=\operatorname {arccsc} x=\arcsin \left({\frac {1}{x}}\right)}
Where
|
x
|
≥
1
{\displaystyle |x|\geq 1}
and
y
∈
[
−
π
2
,
0
)
∪
(
0
,
π
2
]
{\displaystyle y\in \left[-{\frac {\pi }{2}},0\right)\cup \left(0,{\frac {\pi }{2}}\right]}
Then, applying the chain rule to
arcsin
(
1
x
)
{\displaystyle \arcsin \left({\frac {1}{x}}\right)}
:
d
y
d
x
=
1
1
−
(
1
x
)
2
⋅
(
−
1
x
2
)
=
−
1
x
2
1
−
1
x
2
=
−
1
x
2
x
2
−
1
x
2
=
−
1
x
2
x
2
−
1
=
−
1
|
x
|
x
2
−
1
{\displaystyle {\frac {dy}{dx}}={\frac {1}{\sqrt {1-({\frac {1}{x}})^{2}}}}\cdot \left(-{\frac {1}{x^{2}}}\right)=-{\frac {1}{x^{2}{\sqrt {1-{\frac {1}{x^{2}}}}}}}=-{\frac {1}{x^{2}{\frac {\sqrt {x^{2}-1}}{\sqrt {x^{2}}}}}}=-{\frac {1}{{\sqrt {x^{2}}}{\sqrt {x^{2}-1}}}}=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
See also
References
Bibliography