This article is about a specific compound. For the class of compounds, see boranes. For the edition of the Hebrew Bible known as BH5, see Biblia Hebraica Quinta.
Borane is an inorganic compound with the chemical formulaBH 3. Because it tends to dimerize or form adducts, borane is very rarely observed. It normally dimerizes to diborane in the absence of other chemicals.[2] It can be observed directly as a continuously produced, transitory, product in a flow system or from the reaction of laser ablated atomic boron with hydrogen.[3]
In the absence of other bases, it dimerizes to form diborane. Thus, it is an intermediate in the preparation of diborane according to the reaction:[5]
BX3 +BH4− → HBX3− + (BH3) (X=F, Cl, Br, I)
2 BH3 → B2H6
The standard enthalpy of dimerization of BH3 is estimated to be −170 kJ mol−1.[6]
The boron atom in BH3 has 6 valence electrons. Consequently, it is a strong Lewis acid and reacts with any Lewis base ('L' in equation below) to form an adduct:[7]
BH3 + L → L—BH3
in which the base donates its lone pair, forming a dative covalent bond. Such compounds are thermodynamically stable, but may be easily oxidised in air. Solutions containing borane dimethylsulfide and borane–tetrahydrofuran are commercially available; in tetrahydrofuran a stabilising agent is added to prevent the THF from oxidising the borane.[8] A stability sequence for several common adducts of borane, estimated from spectroscopic and thermochemical data, is as follows:
BH3 has some soft acid characteristics as sulfur donors form more stable complexes than do oxygen donors.[5] Aqueous solutions of BH3 are extremely unstable.[9][10]
Molecular species BH3 is a very strong Lewis acid. It can be isolated in the form of various adducts, such as borane carbonyl, BH3(CO).[11]
Molecular BH3 is believed to be a reaction intermediate in the pyrolysis of diborane to produce higher boranes:[5]
B2H6 ⇌ 2BH3
BH3 +B2H6 → B3H7 +H2 (rate determining step)
BH3 + B3H7 ⇌ B4H10
B2H6 + B3H7 → BH3 + B4H10
⇌ B5H11 + H2
Further steps give rise to successively higher boranes, with B10H14 as the most stable end product contaminated with polymeric materials, and a little B20H26.
Borane ammoniate, which is produced by a displacement reaction of other borane adducts, eliminates elemental hydrogen on heating to give borazine (HBNH)3.[12]
This reaction is regioselective.[14] Other borane derivatives can be used to give even higher regioselectivity.[15] The product trialkylboranes can be converted to useful organic derivatives. With bulky alkenes one can prepare species such as [HBR2]2, which are also useful reagents in more specialised applications. Borane dimethylsulfide which is more stable than borane–tetrahydrofuran may also be used.[16][15]
Phosphine-boranes, with the formula R3−nHnPBH3, are adducts of organophosphines and borane.
Borane adducts with amines are more widely used.[18] Borane makes a strong adduct with triethylamine; using this adduct requires harsher conditions in hydroboration. This can be advantageous for cases such as hydroborating trienes to avoid polymerization. More sterically hindered tertiary and silyl amines can deliver borane to alkenes at room temperature.
^Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 337. ISBN978-0387683546.
^Tague, Thomas J.; Andrews, Lester (1994). "Reactions of Pulsed-Laser Evaporated Boron Atoms with Hydrogen. Infrared Spectra of Boron Hydride Intermediate Species in Solid Argon". Journal of the American Chemical Society. 116 (11): 4970–4976. doi:10.1021/ja00090a048. ISSN0002-7863.
^Page, M.; Adams, G.F.; Binkley, J.S.; Melius, C.F. (1987). "Dimerization energy of borane". J. Phys. Chem. 91 (11): 2675–2678. doi:10.1021/j100295a001.
^Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 337. ISBN978-0387683546.
^Hydrocarbon Chemistry, George A. Olah, Arpad Molner, 2d edition, 2003, Wiley-Blackwell ISBN978-0471417828
^Burg, Anton B.; Schlesinger, H. I. (May 1937). "Hydrides of boron. VII. Evidence of the transitory existence of borine (BH 3): Borine carbonyl and borine trimethylammine". Journal of the American Chemical Society. 59 (5): 780–787. doi:10.1021/ja01284a002.
^Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 337. ISBN978-0387683546.
^Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 338. ISBN978-0387683546.
^ abBurkhardt, Elizabeth R.; Matos, Karl (July 2006). "Boron reagents in process chemistry: Excellent tools for selective reductions". Chemical Reviews. 106 (7): 2617–2650. doi:10.1021/cr0406918. PMID16836295.
^Kollonitisch, J. (1961). "Reductive Ring Cleavage of Tetrahydrofurans by Diborane". J. Am. Chem. Soc. 83 (6): 1515. doi:10.1021/ja01467a056.
^Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 344. ISBN978-0387683546.
^Carboni, B.; Mounier, L. (1999). "Recent developments in the chemistry of amine- and phosphine-boranes". Tetrahedron. 55 (5): 1197. doi:10.1016/S0040-4020(98)01103-X.
^Szieberth, Dénes; Szpisjak, Tamás; Turczel, Gábor; Könczöl, László (19 August 2014). "The stability of η2-H2 borane complexes – a theoretical investigation". Dalton Transactions. 43 (36): 13571–13577. doi:10.1039/C4DT00019F. PMID25092548.
^Tague, Thomas J.; Andrews, Lester (1 June 1994). "Reactions of Pulsed-Laser Evaporated Boron Atoms with Hydrogen. Infrared Spectra of Boron Hydride Intermediate Species in Solid Argon". Journal of the American Chemical Society. 116 (11): 4970–4976. doi:10.1021/ja00090a048.
^Schreiner, Peter R.; Schaefer III, Henry F.; Schleyer, Paul von Ragué (1 June 1994). "The structure and stability of BH5. Does correlation make it a stable molecule? Qualitative changes at high levels of theory". The Journal of Chemical Physics. 101 (9): 7625. Bibcode:1994JChPh.101.7625S. doi:10.1063/1.468496.
^A Life of Magic Chemistry: Autobiographical Reflections Including Post-Nobel Prize Years and the Methanol Economy, 159p