In chemistry, methanium is a complex positive ion with formula [CH5]+ (metastable transitional form, a carbon atom covalently bonded to five hydrogen atoms) or [CH3(H2)]+ (fluxional form, namely a molecule with one carbon atom covalently bonded to three hydrogen atoms and one dihydrogen molecule), bearing a +1 electric charge. It is a superacid and one of the onium ions, indeed the simplest carbonium ion.
It is highly unstable and highly reactive even upon having a complete octet, thus granting its superacidic properties.
Methanium can be produced in the laboratory as a rarefied gas or as a dilute species in superacids. It was prepared for the first time in 1950 and published in 1952 by Victor Talrose and his assistant Anna Konstantinovna Lyubimova.[2][3] It occurs as an intermediate species in chemical reactions.
The methanium ion is named after methane (CH4), by analogy with the derivation of ammonium ion (NH+4) from ammonia (NH3).
Structure
Fluxional methanium can be visualised as a CH+3carbenium ion with a molecule of hydrogen interacting with the empty orbital in a 3-center-2-electron bond. The bonding electron pair in the H2 molecule is shared between the two hydrogen and one carbon atoms making up the 3-center-2-electron bond.[4]
The two hydrogen atoms in the H2 molecule can continuously exchange positions with the three hydrogen atoms in the CH+3 ion (a conformation change called pseudorotation, specifically the Berry mechanism). The methanium ion is therefore considered a fluxional molecule. The energy barrier for the exchange is quite low and occurs even at very low temperatures.[5][6]
Infrared spectroscopy has been used to obtain information about the different conformations of the methanium ion.[7][8][9] The IR spectrum of plain methane has two C-H bands from symmetric and asymmetric stretching at around 3000 cm−1 and two bands around 1400 cm−1 from symmetrical and asymmetric bending vibrations. In the spectrum of CH+5 three asymmetric stretching vibrations are present around 2800–3000 cm−1, a rocking vibration at 1300 cm−1, and a bending vibration at 1100 1300 cm−1.
Xiao-Gang Wang; Tucker Carrington Jr (2016). "Calculated rotation-bending energy levels of CH5+ and a comparison with experiment". Journal of Chemical Physics. 144 (20): 204304. Bibcode:2016JChPh.144t4304W. doi:10.1063/1.4948549. PMID27250303.
^
V. L. Talrose and A. K. Lyubimova, Dokl. Akad. Nauk SSSR 86, 909-912 (1952) (In Russian: Тальрозе, В. Л., and А. К. Любимова. "Вторичные процессы в ионном источнике масс-спектрометра." ДАН СССР 86 (1952): 909-912)
^ Rasul, Golam; Prakash, G.K. Surya; Olah, George A. (2011). "Comparative study of the hypercoordinate carbonium ions and their boron analogs: A challenge for spectroscopists". Chemical Physics Letters. 517 (1–3): 1–8. Bibcode:2011CPL...517....1R. doi:10.1016/j.cplett.2011.10.020.
^ Schreiner, Peter R.; Kim, Seung-Joon; Schaefer, Henry F.; von Ragué Schleyer, Paul (1993). "CH+ 5: The never-ending story or the final word?". Journal of Chemical Physics. 99 (5): 3716–3720. doi:10.1063/1.466147.
^ Müller, Hendrik; Kutzelnigg, Werner; Noga, Jozef; Klopper, Wim (1997). "CH5+: The story goes on. An explicitly correlated coupled-cluster study". Journal of Chemical Physics. 106 (5): 1863. Bibcode:1997JChPh.106.1863M. doi:10.1063/1.473340.
^ ab Field, F. H.; Munson, M. S. B. (1965). "Reactions of gaseous ions. XIV. Mass spectrometric studies of methane at pressures to 2 Torr". Journal of the American Chemical Society. 87 (15): 3289–3294. doi:10.1021/ja01093a001.