Theorem in algebraic geometry
In algebraic geometry , the Bogomolov–Sommese vanishing theorem is a result related to the Kodaira–Itaka dimension . It is named after Fedor Bogomolov and Andrew Sommese . Its statement has differing versions:
Bogomolov–Sommese vanishing theorem for snc pair :[ 1] [ 2] [ 3] [ 4] Let X be a projective manifold (smooth projective variety ), D a simple normal crossing divisor (snc divisor) and
A
⊆
Ω
X
p
(
log
D
)
{\displaystyle A\subseteq \Omega _{X}^{p}(\log D)}
an invertible subsheaf . Then the Kodaira–Itaka dimension
κ
(
A
)
{\displaystyle \kappa (A)}
is not greater than p .
This result is equivalent to the statement that:[ 5]
H
0
(
X
,
A
−
1
⊗
Ω
X
p
(
log
D
)
)
=
0
{\displaystyle H^{0}\left(X,A^{-1}\otimes \Omega _{X}^{p}(\log D)\right)=0}
for every complex projective snc pair
(
X
,
D
)
{\displaystyle (X,D)}
and every invertible sheaf
A
∈
P
i
c
(
X
)
{\displaystyle A\in \mathrm {Pic} (X)}
with
κ
(
A
)
>
p
{\displaystyle \kappa (A)>p}
.
Therefore, this theorem is called the vanishing theorem.
Bogomolov–Sommese vanishing theorem for lc pair :[ 6] [ 7] Let (X,D) be a log canonical pair, where X is projective. If
A
⊆
Ω
X
[
p
]
(
log
⌊
D
⌋
)
{\displaystyle A\subseteq \Omega _{X}^{[p]}(\log \lfloor D\rfloor )}
is a
Q
{\displaystyle \mathbb {Q} }
-Cartier reflexive subsheaf of rank one,[ 8] then
κ
(
A
)
≤
p
{\displaystyle \kappa (A)\leq p}
.
See also
Notes
References
Esnault, Hélène ; Viehweg, Eckart (1992). "Differential forms and higher direct images" . Lectures on Vanishing Theorems . pp. 54– 64. doi :10.1007/978-3-0348-8600-0_7 . ISBN 978-3-7643-2822-1 .
Graf, Patrick (2015). "Bogomolov–Sommese vanishing on log canonical pairs". Journal für die reine und angewandte Mathematik (Crelle's Journal) . 2015 (702). arXiv :1210.0421 . doi :10.1515/crelle-2013-0031 . S2CID 119627680 .
Greb, Daniel; Kebekus, Stefan; Kovács, Sándor J. (2010). "Extension theorems for differential forms and Bogomolov–Sommese vanishing on log canonical varieties". Compositio Mathematica . 146 : 193– 219. arXiv :0808.3647 . doi :10.1112/S0010437X09004321 . S2CID 1474399 .
Greb, Daniel; Kebekus, Stefan; Kovács, Sándor J.; Peternell, Thomas (2011). "Differential forms on log canonical spaces" (PDF) . Publications Mathématiques de l'IHÉS . 114 : 87– 169. arXiv :1003.2913 . doi :10.1007/s10240-011-0036-0 . S2CID 115177340 .
Kebekus, Stefan (2013). "Differential forms on singular spaces, the minimal model program, and hyperbolicity of moduli stacks". Handbook of Moduli II . Advanced Lectures in Mathematics Volume 25. International Press of Boston, Inc. pp. 71– 113. arXiv :1107.4239 . ISBN 9781571462589 .
Michałek, Mateusz (2012). "Notes on Kebekus' lectures on differential forms on singular spaces" (PDF) . Contributions to Algebraic Geometry . EMS Series of Congress Reports. pp. 375– 388. doi :10.4171/114-1/14 . ISBN 978-3-03719-114-9 .
Further reading
Bogomolov, F. A. (1979). "Holomorphic Tensors and Vector Bundles on Projective Varieties" . Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya . 42 (6): 1227– 1287. Bibcode :1979IzMat..13..499B . doi :10.1070/IM1979v013n03ABEH002076 .
Bogomolov, Fedor (1980). "Unstable vector bundles and curves on surfaces" (PDF) . Proceedings of the International Congress of Mathematicians. Helsinki, 1978 : 517– 524.
Demailly, Jean-Pierre (1989). "Une généralisation du théorème d'annulation de Kawamata-Viehweg" . C. R. Acad. Sci. Paris Sér. I . 309 : 123– 126. MR 1004954 .
Esnault, H.; Viehweg, E. (1986). "Logarithmic de Rham complexes and vanishing theorems" . Inventiones Mathematicae . 86 : 161– 194. Bibcode :1986InMat..86..161E . doi :10.1007/BF01391499 . S2CID 123388645 .
Jabbusch, Kelly; Kebekus, Stefan (2011). "Families over special base manifolds and a conjecture of Campana". Mathematische Zeitschrift . 269 (3– 4): 847– 878. arXiv :0905.1746 . doi :10.1007/s00209-010-0758-6 . S2CID 17138847 .
Kawakami, Tatsuro (2021). "Bogomolov–Sommese type vanishing for globally F-regular threefolds". Mathematische Zeitschrift . 299 (3– 4): 1821– 1835. arXiv :1911.08240 . doi :10.1007/s00209-021-02740-8 . S2CID 215768942 .
Kawakami, Tatsuro (2022). "Bogomolov-Sommese vanishing and liftability for surface pairs in positive characteristic". Advances in Mathematics . 409 : 108640. arXiv :2108.03768 . doi :10.1016/j.aim.2022.108640 . S2CID 236956885 .
Müller-Stach, Stefan J. "Hodge Theory and Algebraic Cycles" . Global Aspects of Complex Geometry . pp. 451– 469. doi :10.1007/3-540-35480-8_12 .
Watanabe, Yuta (2023). "Bogomolov–Sommese type vanishing theorem for holomorphic vector bundles equipped with positive singular Hermitian metrics". Mathematische Zeitschrift . 303 (4). arXiv :2202.06603 . doi :10.1007/s00209-023-03252-3 . S2CID 246823913 .
Viehweg, Eckart (1982). "Vanishing theorems" . Journal für die Reine und Angewandte Mathematik . 335 : 1– 8. doi :10.1515/crll.1982.335.1 .