Le Potier's vanishing theorem Generalizes the Kodaira vanishing theorem for ample vector bundle
In algebraic geometry , Le Potier's vanishing theorem is an extension of the Kodaira vanishing theorem , on vector bundles . The theorem states the following[ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9]
Le Potier (1975) : Let X be a n -dimensional compact complex manifold and E a holomorphic vector bundle of rank r over X, here
H
p
,
q
(
X
,
E
)
{\displaystyle H^{p,q}(X,E)}
is Dolbeault cohomology group, where
Ω
X
p
{\displaystyle \Omega _{X}^{p}}
denotes the sheaf of holomorphic p -forms on X . If E is an ample , then
H
p
,
q
(
X
,
E
)
=
0
{\displaystyle H^{p,q}(X,E)=0}
for
p
+
q
≥
n
+
r
{\displaystyle p+q\geq n+r}
.
from Dolbeault theorem ,
H
q
(
X
,
Ω
X
p
⊗
E
)
=
0
{\displaystyle H^{q}(X,\Omega _{X}^{p}\otimes E)=0}
for
p
+
q
≥
n
+
r
{\displaystyle p+q\geq n+r}
.
By Serre duality , the statements are equivalent to the assertions:
H
i
(
X
,
Ω
X
j
⊗
E
∗
)
=
0
{\displaystyle H^{i}(X,\Omega _{X}^{j}\otimes E^{*})=0}
for
j
+
i
≤
n
−
r
{\displaystyle j+i\leq n-r}
.
In case of r = 1, and let E is an ample (or positive) line bundle on X, this theorem is equivalent to the Nakano vanishing theorem . Also, Schneider (1974) found another proof.
Sommese (1978) generalizes Le Potier's vanishing theorem to k-ample and the statement as follows:[ 2]
Le Potier–Sommese vanishing theorem: Let X be a n -dimensional algebraic manifold and E is a k-ample holomorphic vector bundle of rank r over X, then
H
p
,
q
(
X
,
E
)
=
0
{\displaystyle H^{p,q}(X,E)=0}
for
p
+
q
≥
n
+
r
+
k
{\displaystyle p+q\geq n+r+k}
.
Demailly (1988) gave a counterexample, which is as follows:[ 1] [ 10]
Conjecture of Sommese (1978) : Let X be a n -dimensional compact complex manifold and E a holomorphic vector bundle of rank r over X. If E is an ample, then
H
p
,
q
(
X
,
Λ
a
E
)
=
0
{\displaystyle H^{p,q}(X,\Lambda ^{a}E)=0}
for
p
+
q
≥
n
+
r
−
a
+
1
{\displaystyle p+q\geq n+r-a+1}
is false for
n
=
2
r
≥
6.
{\displaystyle n=2r\geq 6.}
See also
Note
References
Demailly, Jean-Pierre (1988). "Vanishing theorems for tensor powers of an ample vector bundle" (PDF) . Inventiones Mathematicae . 91 : 203– 220. Bibcode :1988InMat..91..203D . doi :10.1007/BF01404918 . S2CID 18984867 .
Laytimi, F.; Nahm, W. (2004). "A generalization of le Potier's vanishing theorem". Manuscripta Mathematica . 113 (2): 165– 189. arXiv :math/0210010 . doi :10.1007/s00229-003-0432-y . S2CID 14203286 .
Lazarsfeld, Robert (2004). Positivity in Algebraic Geometry II . doi :10.1007/978-3-642-18810-7 . ISBN 978-3-540-22531-7 .
Laytimi, F.; Nagaraj, D. S. (2018). "Remarks on Ramanujam-Kawamata-Viehweg Vanishing Theorem". Indian Journal of Pure and Applied Mathematics . 49 (2): 257– 263. arXiv :1702.04476 . doi :10.1007/s13226-018-0267-6 . S2CID 119147594 .
Peternell, Th. (1994). "Pseudoconvexity, the Levi Problem and Vanishing Theorems". Several Complex Variables VII . Encyclopaedia of Mathematical Sciences. Vol. 74. pp. 221– 257. doi :10.1007/978-3-662-09873-8_6 . ISBN 978-3-642-08150-7 .
Le Potier, J. (1975). "Annulation de la cohomologie à valeurs dans un fibré vectoriel holomorphe positif de rang quelconque" . Mathematische Annalen . 218 : 35– 53. doi :10.1007/BF01350066 . S2CID 122814022 .
Le Potier, J. (1977). "Cohomologie de la grassmannienne à valeurs dans les puissances extérieures et symétriques du fibré universel" . Mathematische Annalen . 226 (3): 257– 270. doi :10.1007/BF01362429 . S2CID 117285630 .
Shiffman, Bernard; Sommese, Andrew John (1985). "Vector Bundles: Ampleness" . Vanishing Theorems on Complex Manifolds . Progress in Mathematics. Vol. 56. pp. 89– 116. doi :10.1007/978-1-4899-6680-3_5 . ISBN 978-1-4899-6682-7 .
Verdier, J. L. (1974). " "Le théorème de Le Potier." Différents aspects de la positivité" (PDF) . Soc. Math. France, Paris . 17 : 68– 78. MR 0367312 .
Manivel, Laurent (1997). "Vanishing theorems for ample vector bundles". Inventiones Mathematicae . 127 (2): 401– 416. arXiv :alg-geom/9603012 . Bibcode :1997InMat.127..401M . doi :10.1007/s002220050126 . S2CID 14052238 .
Peternell, Th.; Le Potier, J.; Schneider, M. (1987). "Vanishing theorems, linear and quadratic normality" . Inventiones Mathematicae . 87 (3): 573– 586. Bibcode :1987InMat..87..573P . doi :10.1007/BF01389243 . S2CID 120949227 .
Sommese, Andrew John (1978). "Submanifolds of Abelian varieties to Rebecca" . Mathematische Annalen . 233 (3): 229– 256. doi :10.1007/BF01405353 . S2CID 120704169 .
Schneider, Michael (1974). "Ein einfacher Beweis des Verschwindungssatzes für positive holomorphe Vektorraumbündel" . Manuscripta Mathematica . 11 : 95– 101. doi :10.1007/BF01189093 . S2CID 120722017 .
Manivel, Laurent (1992). "Théorèmes d'annulation pour les fibrés associés à un fibré ample" . Annali della Scuola Normale Superiore di Pisa - Classe di Scienze . 19 (4): 515– 565.
GIRBAU, J. (1976). "Sur le theoreme de Le Potier d'annulation de la cohomologie" . C. R. Acad. Sci. Paris Sér. A . 283 : 355– 358.
Broer, Abraham (1997). "A vanishing theorem for Dolbeault cohomology of homogeneous vector bundles" . Journal für die reine und angewandte Mathematik (Crelle's Journal) . 1997 (493): 153– 170. doi :10.1515/crll.1997.493.153 . S2CID 117547554 .
Demailly, Jean-Pierre (1996). "L2 vanishing theorems for positive line bundles and adjunction theory". Transcendental Methods in Algebraic Geometry . Lecture Notes in Mathematics. Vol. 1646. pp. 1– 97. arXiv :alg-geom/9410022 . doi :10.1007/BFb0094302 . ISBN 978-3-540-62038-9 . S2CID 117583140 .
Litt, Daniel (2018). "Non-Abelian Lefschetz hyperplane theorems". Journal of Algebraic Geometry . 27 (4): 593– 646. arXiv :1601.07914 . doi :10.1090/jag/704 . S2CID 16039153 .
Debarre, Olivier (2005). "Varieties with ample cotangent bundle". Compositio Mathematica . 141 (6): 1445– 1459. arXiv :math/0306066 . doi :10.1112/S0010437X05001399 . S2CID 2644826 .
Further reading
Schneider, Michael; Zintl, Jörg (1993). "The theorem of Barth-Lefschetz as a consequence of le Potier's vanishing theorem". Manuscripta Mathematica . 80 : 259– 263. doi :10.1007/BF03026551 . S2CID 119887533 .
Huang, Chunle; Liu, Kefeng; Wan, Xueyuan; Yang, Xiaokui (2022). "Vanishing Theorems for Sheaves of Logarithmic Differential Forms on Compact Kähler Manifolds". International Mathematics Research Notices . doi :10.1093/imrn/rnac204 .
Bădescu, Lucian; Repetto, Flavia (2009). "A Barth–Lefschetz Theorem for Submanifolds of a Product of Projective Spaces". International Journal of Mathematics . 20 : 77– 96. arXiv :math/0701376 . doi :10.1142/S0129167X09005182 . S2CID 10539504 .
External links