Cartoon representation of the X-ray structure of bilirubin oxidase from Myrothecium verrucaria based on PDB accession code 2xll. The protein ribbon is rainbow colored with the N-terminus in blue and the C-terminus in red. The four copper atoms are shown as spheres and the glycans shown as sticks.
This enzyme belongs to the family of oxidoreductases, to be specific those acting on the CH-CH group of donor with oxygen as acceptor. The systematic name of this enzyme class is bilirubin:oxygen oxidoreductase. This enzyme is also called bilirubin oxidase M-1. This enzyme participates in porphyrin and chlorophyll metabolism. It is widely studied as a catalyst for oxygen reduction.[1]
The active site consists of four copper centers, reminiscent of laccase. These centers are classified as type I (cys, met, his, his), type II (3his), and two type III (2his).[4] The latter two centers are arranged in a trinuclear copper cluster forming the active site for oxygen reduction.[5] The type I copper center is the primary electron acceptor and the site for the reduction of bilirubin.
References
^Mano N, Edembe L (December 2013). "Bilirubin oxidases in bioelectrochemistry: features and recent findings". Biosensors & Bioelectronics. 50: 478–485. doi:10.1016/j.bios.2013.07.014. PMID23911663.