Thom-VermutungDie Thom-Vermutung ist in der Mathematik eine inzwischen bewiesene, auf René Thom zurückgehende Vermutung über Flächen in der komplex-projektiven Ebene. Die Vermutung und ihre Verallgemeinerung auf symplektische Mannigfaltigkeiten waren eine wichtige Motivation bei der Entwicklung analytisch-topologischer Methoden wie den Seiberg-Witten-Invarianten. HintergrundGlatte algebraische Kurven in der komplex-projektiven Ebene sind gegeben durch homogene Polynome. Sie sind komplex 1-dimensionale Mannigfaltigkeiten, also topologische Flächen. Das Geschlecht einer durch ein Polynom vom Grad gegebenen algebraischen Kurve berechnet sich nach der Formel
VermutungDie nach René Thom benannte Thom-Vermutung besagt: Wenn eine in die komplex-projektive Ebene eingebettete differenzierbare Fläche ist, die dieselbe Homologieklasse repräsentiert wie eine durch ein homogenes Polynom vom Grad gegebene glatte algebraische Kurve, dann erfüllt das Geschlecht der Fläche die Ungleichung
Insbesondere ist jede algebraische Kurve eine Fläche minimalen Geschlechts (Thurston-Norm-minimierende Fläche) in ihrer Homologieklasse. Man sieht leicht, dass die 2. Homologie der komplex-projektiven Ebene isomorph zu den ganzen Zahlen ist, glatte algebraische Kurven vom Geschlecht entsprechen unter diesem Isomorphismus der Zahl . Die Thom-Vermutung berechnet also die Thurston-Norm (das minimale Geschlecht) für alle Homologieklassen in . BeweisWenige Wochen nachdem Edward Witten die Seiberg-Witten-Invarianten in die Mathematik eingeführt hatte, bewiesen Kronheimer–Mrowka im Oktober 1994 die Thom-Vermutung mit Hilfe dieser neuen Invarianten.[1] VerallgemeinerungDie symplektische Thom-Vermutung besagt, dass symplektische Flächen in symplektischen 4-Mannigfaltigkeiten Flächen minimalen Geschlechts in ihrer Homologieklasse sind. Die Thom-Vermutung ist ein Spezialfall, weil die glatten algebraischen Kurven symplektische Untermannigfaltigkeiten bzgl. der kanonischen symplektischen Struktur auf der komplex-projektiven Ebene sind. Die symplektische Thom-Vermutung wurde mit Hilfe von Seiberg-Witten-Invarianten durch Morgan–Szabó–Taubes für symplektische Flächen nichtnegativer Selbstschnittzahl bewiesen.[2] Den allgemeinen Beweis für die symplektische Thom-Vermutung gaben schließlich Ozsváth und Szabó ebenfalls mit Hilfe von Seiberg-Witten-Invarianten.[3] Es ist allerdings im Allgemeinen eine schwierige Frage, welche Homologieklassen einer symplektischen Mannigfaltigkeit sich durch symplektische Untermannigfaltigkeiten repräsentieren lassen. Einzelnachweise
|
Portal di Ensiklopedia Dunia