Ausgezeichnete Punkte im DreieckIn der Geometrie versteht man unter den ausgezeichneten Punkten (auch: merkwürdigen Punkten oder Zentren) eines Dreiecks in erster Linie die folgenden vier Punkte:
Die drei erstgenannten Schnittpunkte (H, U und S) liegen immer auf einer Geraden, der eulerschen Geraden. Auf ihr, und zwar in der Mitte zwischen H und U, liegt auch der Mittelpunkt des Feuerbachkreises. Weitere Punkte nach der Encyclopedia of Triangle CentersNeben den vier „klassischen“ ausgezeichneten Punkten eines Dreiecks (Schwerpunkt, Umkreismittelpunkt, Inkreismittelpunkt, Höhenschnittpunkt), die schon in der Antike bekannt waren, wurden in den letzten Jahrhunderten viele weitere Punkte gefunden und untersucht. Clark Kimberlings Encyclopedia of Triangle Centers (siehe Weblink) führt mehr als 65.000 (Stand 27. August 2024) besondere Punkte und ihre bislang bekannten Eigenschaften auf. Die in diesem Verzeichnis eingeführte Standardbezeichnung, bestehend aus dem Buchstaben X und einem Index, wird heute in vielen Abhandlungen zur Dreiecksgeometrie verwendet. Die folgende Tabelle nennt einige wichtige Beispiele:
Verwandte ThemenNeben Einzelpunkten lassen sich einem Dreieck auch verschiedene Tupel von Punkten zuordnen: Spezielle Kreise sind:
Weitere spezielle Kegelschnitte sind: Literatur
Weblinks
|
Portal di Ensiklopedia Dunia