Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).
Im Unterschied zum Phenazon trägt Aminophenazon in 4-Position des Pyrazolon-Heterocyclus eine Dimethylamino-Gruppe (tertiäres Amin), weshalb es treffender auch Dimethylaminophenazon genannt wird.
Aminophenazon ist ein Pyrazolon (Pyrazolin-3-on) mit fiebersenkenden, entzündungshemmenden und analgetischen Eigenschaften. Es ist als Nichtopioid-Analgetikum eine Weiterentwicklung von Phenazon und dreimal stärker wirksam als dieses, jedoch mit dem Risiko einer Agranulozytose. Aminophenazon darf aufgrund des kanzerogenen Metaboliten Dimethylnitrosamin nur noch veterinär verwendet werden (in frühen Stadien des septischen Schockes bei Hund und Katze und in Kombination mit Phenylbutazon)[5] und wird in Kombinationspräparaten seit 1977 durch Propyphenazon ersetzt.[6]
Ein Atemtest mit 13C-markiertem Aminopyrin wurde zur nicht-invasiven Messung der Cytochrom P-450 Aktivität in der Leber verwendet.[7]
Pharmakokinetik
Nach peroraler Gabe wird Aminophenazon rasch resorbiert.[9] Es liegt eine geringe Plasmaproteinbindung vor.[10] Bei Ratten konnte 30 Minuten nach der Gabe eine erhöhte Konzentration in der Nasenschleimhaut und in der Leber nachgewiesen werden.[11]
Im Urin wurde 4-Acetylamino-3-methyl-1-phenylpyrazolon nachgewiesen. Das lässt auf eine oxidative N-Dealkylierung durch das MFO-System[12] (Cytochrom P450-haltige Monooxygenasen oder mischfunktionelle Oxygenasen) in der Leber und anschließender Acetylierung der freien, primären Aminogruppe schließen.[8] Ein analoger Mechanismus wird beim Metabolismus des strukturell sehr ähnlichen Metamizol-Metaboliten 4-Methylaminophenazon nach dessen Resorption beobachtet.[13] Die Metabolisierungsgeschwindigkeit durch das Cytochrom P450-System ist bei Ratten tageszeitenabhängig.[14]Renal kann Aminophenazon unverändert, glucuronidiert oder sulfatiert ausgeschieden werden;[9] nach hohen Dosen kann Rubazonsäure im Harn auftreten,[15] und dessen Rotfärbung bewirken.[13]
↑A. Rocco, G. de Nucci, G. Valente, D. Compare, A. D’Arienzo, L. Cimino, F. Perri, G. Nardone: 13C-aminopyrine breath test accurately predicts long-term outcome of chronic hepatitis C. In: Journal of hepatology. Band 56, Nummer 4, April 2012, S. 782–787, doi:10.1016/j.jhep.2011.10.015. PMID 22173159.
↑Sullivan, J.B. Jr., G.R. Krieger (eds.). Hazardous Materials Toxicology-Clinical Principles of Environmental Health. Baltimore, MD: Williams and Wilkins, 1992., S. 119.
↑ abMutschler Arzneimittelwirkungen, 9. Auflage, Wissenschaftl. Verlagsgesellschaft mbH Stuttgart, S. 251 f., ISBN 978-3-8047-1952-1.
↑Doull, J., C.D. Klaassen, and M. D. Amdur (eds.). Casarett and Doull's Toxicology. 2nd ed. New York: Macmillan Publishing Co., 1980., S. 67.
↑H. Oelschläger: Drug Metabolism: Chemical and Biochemical Aspects von B. Testa und P. Jenner, 700 S., Marcel Dekker, Inc., New York 1976. In: Archiv der Pharmazie. 311, 1978, S. 165, doi:10.1002/ardp.19783110215.
Dieser Artikel behandelt ein Gesundheitsthema. Er dient weder der Selbstdiagnose noch wird dadurch eine Diagnose durch einen Arzt ersetzt. Bitte hierzu den Hinweis zu Gesundheitsthemen beachten!