Dieser Artikel behandelt das mathematische Symbol. Zum kyrillischen Buchstaben д siehe Д, zum griechischen Buchstaben δ siehe Delta, zum Buchstaben ꝺ siehe Insulare Schriften.
Der geläufigste Name des ∂ ist Del,[2][3] was allerdings im Englischen auch den Nabla-Operator bezeichnet. Daher gibt es weitere Namen für das Symbol, u. a. partielles d,[4] im Englischen Dabba[5] oder Jacobidelta,[6] sowie einfach d.[7] Dann ist es allerdings sprachlich nicht mehr von der totalen Ableitung zu unterscheiden.
Verwendungsgeschichte
So wie das Integralzeichen eine spezielle Form des langen s darstellt, ist das ∂ eine spezielle kursive Schreibweise des ds. Zuerst verwendet wurde es 1770 vom französischen Mathematiker Nicolas de Concordet als Symbol für das partielle Differential.[6]
„Dans toute la suite de ce Memoire, dz & ∂z désigneront ou deux differences partielles de z, dont une par rapport a x, l'autre par rapport a y, ou bien dz sera une différentielle totale, & ∂z une difference partielle.“
„Im weiteren Verlauf dieser Abhandlung bezeichnen dz & ∂z entweder zwei partielle Differentiale von z, davon einer in Bezug auf x, der andere in Bezug auf y, oder dz ist ein Gesamtdifferential & ∂z ein partielles Differential.“
„Pour éviter toute ambiguité, je représenterai par ∂u/∂x le coefficient de x dans la différence de u, & par du/dx la différence complète de u divisée par dx.“
„Um Mehrdeutigkeiten zu vermeiden, werde ich durch ∂u/∂x den Koeffizienten von x im Differential von u & durch du/dx das totale Differential von u geteilt durch dx darstellen.“
– Adrien-Marie Legendre: Memoire sur la manière de distinguer les maxima des minima dans le Calcul des Variations, 1786[9]
Legendre stellte die Verwendung später ein. Carl Gustav Jacob Jacobi nahm sie 1841 wieder auf und verbreitete das ∂ weitreichend.[6]
„Sed quia uncorum accumulatio et legenti et scribenti molestior fieri solet, praetuli characteristica d differentialia vulgaria, differentialia autem partialia characteristica ∂ denotare.“
„Da jedoch die Anhäufung von Haken für das Lesen und Schreiben noch mühsamer ist, bevorzuge ich die üblichen d charakteristisch für gewöhnliche Differentiale, für partielle Differentiale ist charakteristisch ∂ angegeben.“
ist die partielle Ableitung von nach . Man braucht sie, wenn eine multivariable Funktion nach einer Variablen differenziert werden soll, um anzugeben, nach welcher.
nennt man die m×n-Jacobimatrix von nach (Matrix der partiellen Ableitungen der von n Variablen abhängigen m-dimensionalen Funktion ).
↑M. Y. Gokhale, N. S. Mujumdar, S. S. Kulkarni, A. N. Singh, K. R. Atal: Engineering Mathematics-i. Nirali Prakashan, 1981, Abschnitt 10.5. ISBN 8190693549. Zitat S. 10.2: „we read it as dabba z by dabba x (or del z by del x)“.