阿莱悖论(英語:Allais Paradox)是决策论中的一个悖论,由法國經濟學家莫里斯·阿莱在1952年提出。阿萊設計出這個悖論,來證明預期效用理論,以及預期效用理論根據的理性選擇公理,本身存在邏輯不一致的問題。丹尼尔·卡内曼與阿摩司·特沃斯基提出確定性效應,來解釋阿萊悖論形成的原因。
概論
选择1
|
选择2
|
赌局A
|
赌局B
|
赌局C
|
赌局D
|
赢得
|
几率
|
赢得
|
几率
|
赢得
|
几率
|
赢得
|
几率
|
1百万
|
100%
|
1百万
|
89%
|
0
|
89%
|
0
|
90%
|
0
|
1%
|
1百万
|
11%
|
5百万
|
10%
|
5百万
|
10%
|
1952年,法国经济学家、诺贝尔经济学奖获得者莫里斯·阿莱作了一个著名的实验:
对100人测试所设计的赌局:
- 赌局A:100%的机会得到100万元。
- 赌局B:10%的机会得到500万元,89%的机会得到100万元,1%的机会什么也得不到。
实验结果:绝大多数人选择A而不是B。即赌局A的期望值(100万元)虽然小于赌局B的期望值(139万元),但是A的效用值大于B的效用值,即:
- ......【1】
然后阿莱使用新赌局对这些人继续进行测试,
- 赌局C:11%的机会得到100万元,89%的机会什么也得不到。
- 赌局D:10%的机会得到500万元,90%的机会什么也得不到。
实验结果:绝大多数人选择D而非C。即赌局C的期望值(11万元)小于赌局D的期望值(50万元),而且C的效用值也小于D的效用值,即:
- ......【2】
數式證明
而由【2】式得:
- ......【3】
【3】与【1】式矛盾,即阿莱悖论。
阿莱悖论的另一种表述是:按照期望效用理论,风险厌恶者应该选择A和C;而风险喜好者应该选择B和D。然而实验中的大多数人选择A和D。
阿莱悖论的解释
出现阿莱悖论的原因是確定性效應(Certainty effect),即人在决策时,对结果确定的现象过度重视。
参见