阻碍理论在数学中,阻碍理论(obstruction theory)是两个不同数学理论的名字,两者都导出了上同调不变量。 同伦理论阻碍理论在同伦论中的早期含义是关于将定义在一个单纯复形或CW-复形上的连续映射对维数归纳延拓的一个手续。传统上称为艾伦伯格阻碍理论(Eilenberg obstruction theory),得名于塞缪尔·艾伦伯格命名。它用系数取值于同伦群得上同调群来定义延拓的阻碍。例如,有一个从单纯复形X到另一个Y的映射,首先定义在X的0-骨架(X的顶点),只要Y 道路连通则总可延拓到1-骨架。由1-骨架延拓到2-骨架意味着在从X的三角形出发的边在Y中的像已经知时,将像填满为实心三角形。 几何拓扑在几何拓扑学中,阻碍理论关心的是当一个拓扑流形有一个逐片线性结构以及当逐片线性流形有一个可微结构。 在至多二维(Rado)与三维(Moise)时,拓扑流形的概念与逐片线性流形重合。在四维时它们是不同的。 在不超过六维时,逐片线性流形与可微流形的概念重合。 割补理论割补理论中两个基本问题是:一个具有庞加莱对偶性的n-维拓扑空间是否同伦等价于一个n-维流形;以及n-维流形之间的同伦等价是否同伦于微分同胚。在这两种情形,对n>4都存在两个阻碍,首先是关于向量丛存在性的拓扑K-理论阻碍:如果它消失则存在一个正规映射,便可以定义代数L-理论中对正规映射执行割补手术以得到同伦等价的第二割补阻碍。 另见参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia