function DouglasPeucker(PointList[], epsilon)
// Find the point with the maximum distance
dmax = 0
index = 0
end = length(PointList)
for i = 2 to (end - 1) {
d = perpendicularDistance(PointList[i], Line(PointList[1], PointList[end]))
if (d > dmax) {
index = i
dmax = d
}
}
ResultList[] = empty;
// If max distance is greater than epsilon, recursively simplify
if (dmax > epsilon) {
// Recursive call
recResults1[] = DouglasPeucker(PointList[1...index], epsilon)
recResults2[] = DouglasPeucker(PointList[index...end], epsilon)
// Build the result list
ResultList[] = {recResults1[1...length(recResults1) - 1], recResults2[1...length(recResults2)]}
} else {
ResultList[] = {PointList[1], PointList[end]}
}
// Return the result
return ResultList[]
end
Urs Ramer, "An iterative procedure for the polygonal approximation of plane curves", Computer Graphics and Image Processing, 1(3), 244–256 (1972) doi:10.1016/S0146-664X(72)80017-0
David Douglas & Thomas Peucker, "Algorithms for the reduction of the number of points required to represent a digitized line or its caricature", The Canadian Cartographer 10(2), 112–122 (1973) doi:10.3138/FM57-6770-U75U-7727
John Hershberger & Jack Snoeyink, "Speeding Up the Douglas–Peucker Line-Simplification Algorithm", Proc 5th Symp on Data Handling, 134–143 (1992). UBC Tech Report TR-92-07 available at http://www.cs.ubc.ca/cgi-bin/tr/1992/TR-92-07 (页面存档备份,存于互联网档案馆)