莱布尼茨三角形莱布尼茨三角形是一種將分數以等腰三角形排列的一種排列方式,三角形二側最外層的數字是其行編號的倒數,其中間的數字是其左側數字和左上方數字差的絕對值。若用代數方式表示:
莱布尼茨三角形是數學家戈特弗里德·莱布尼茨在1714年提出[1]。莱布尼茨三角形的前幾列為:
莱布尼茨三角形的分母列在(OEIS數列A003506)中,其分子均為1。 在楊輝三角形中,每一項都是其左上方和右上方數字的和.而在莱布尼茨三角形中,每一項都是其左下方和右下方數字的和,例如在第五行中的1/30是第六行二個1/60的和。 楊輝三角形可以用二項式係數來計算,而莱布尼茨三角形也可以用二項式係數來計算:。而且可以用楊輝三角形中的項次來計算莱布尼茨三角形:「每一行的各項是第一項除以楊輝三角形中對應項次的結果」[2]。 若將莱布尼茨三角形中第n行的所有分母相加,其結果會是。例如第3行的分母和為3 + 6 + 3 = 12 = 3 × 22。 特別是的莱布尼茨三角形中的各項可以用以下的積分式表示: 相關條目參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia