維度減化
维度减化(英語:Dimensional reduction)是紧化理论中紧致化的维度的大小变为零时的临界情况。在物理学中,通过将所有的场独立存在于额外维度D中,时空维数D的理论能够被较少数量的额外维度D重新定义。 例如,考虑一个周期性的紧凑的维度的L时期。让x成为沿着这条维度的坐标。任何场 可以被描述为以下单元的总和: An 作为一个常数。根据量子力学,这一单元具有沿着x轴的动量nh/L,在那里 h 是普朗克常数。因此,当L达到0时,这个动量达到了无限大,能量也一样,除非n = 0。然而n = 0提供了一个关于 x恒定的场。因此在这个场的限制下,并在有限的能量下, 将不依赖于 x。 这种说法进行了概括。紧凑的维度对所有场施加了特定的边界条件,例如在周期性维度的情况下的周期性边界条件,并且在其他情况下通常为诺伊曼边界条件或狄利克雷边界条件。现在假设紧凑的维度的尺度是L;那么沿这个维度的梯度的可能的特征值是1/L的整数或半整数倍(取决于精确的边界条件)。在量子力学中,这个特征值是场的动量,因此与其能量有关。当L → 0时,除零之外的所有特征值都到无穷大,而能量也是如此。因此,在这个极限情况下,在有限能量的情况下,零是唯一可能的沿着紧凑尺寸的梯度下的特征值,这意味着没有任何东西依赖于这个维度。 参见
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia