等价矩阵在线性代数和矩阵论中,两个矩阵之间的等价是一种矩阵之间的等价关系。假设有两个 的矩阵,记作A和B。它们之间等价当且仅当存在两个可逆的方块矩阵: 的矩阵P以及 的矩阵Q,使得 这时称两个矩阵A和B是等价矩阵。矩阵之间的等价和矩阵的相似关系有所不同。如果两个矩阵A和B相似,那么它们一定是等价矩阵,因为按照矩阵相似的定义,可以找到一个可逆矩阵P,使得 由于其中的P-1也是可逆的矩阵,所以A和B相似必然推出它们等价。但是,等价的矩阵不一定是相似的。首先相似的两个矩阵必须是大小相同的两个方块矩阵,而等价矩阵则没有这个要求。其次,即使两个等价矩阵都是同样大小的方阵, 中用到的Q也不一定是P的逆矩阵。 性质等价矩阵是矩阵集合中的一种等价关系。 两个矩阵等价当且仅当: 参见
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia