磁标势磁标势(英語:Magnetic scalar potential)是描述磁场性质的一个有用的辅助量,尤其是在永磁体中。 在一个单连通、没有自由电流的区域,有 这样,我们可以定义磁标势为[1]:194-199 又因为 并且 这里,充当了磁场的“源”,看起来就像是在电场中的角色。因此,类比束缚电荷,我们可以将 称为“束缚磁荷”(虽然到目前为止尚未发现有单独的磁荷存在)。 如有区域存在自由电流,则可以从总的磁场中减去自由电流的贡献,利用磁标势方法求得剩余量。 利用磁标势求解磁場在靜磁學裏,描述在源電流四周的另外一個很有用的工具是磁标势。由於磁标势是一個純量,不是向量,大多數時候,使用磁标势可以使得運算更加簡便。但是,它只能使用在沒有源電流的空間。注意到靜磁學的兩個基本方程式為
其中, 是磁場強度(H場)。 假設電流密度 等於零,則 ,H場是個保守場,必定存在一個函數 滿足
稱這函數為磁标势。在真空裏或各向同性、線性、均勻的介電質裏,則可將上述定義式代入高斯磁定律,稍加編排,表示為拉普拉斯方程式的形式:
對於任意連續場 ,其梯度的旋度為零。這意味著磁标势場不能存在有任何源電流。但是,實際而言,假若容許不連續線的存在於磁标势場(不連續點可以擁有兩種不同的數值),應用複分析,就可以計算源電流產生的磁場。這不連續線稱為割線(line of cut)。當用磁标势來解析靜磁學問題時,源電流必須置放於割線。 鐵磁性物質的磁标势在鐵磁性物質或永久磁鐵裏,B場 、磁化強度 與H場 之間的關係比較複雜:
應用高斯磁定律,
立可得到
可以視為磁場的源電流,就好似 是靜電學的束縛電荷一樣。這樣,類比束縛電荷,可以稱呼 為「束縛磁荷」。這樣,束縛磁荷的帕松方程式為
這帕松方程式的解答為
参考文献
相关条目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia