浸入數學上,浸入是微分流形之間的可微映射,其導數處處是單射。確切而言,f : M → N是浸入,若在M中每一點p, 都是单射。(TpX表示X在點p處的切空間。另一個等價說法是f是浸入,若f的秩是常數,且等於M的維數: 以上只要求f的導數為單射,但映射f未必是單射。 一個與浸入相關的概念是嵌入。光滑嵌入是一個單射浸入f : M → N而同時為拓撲嵌入,使得M與其在N中的像微分同胚。浸入正是局部嵌入,即對M中每一點x都有一個x的鄰域U ⊂ M,使得f : U → N是嵌入。相反地,局部嵌入都是浸入。 若M是緊緻的,則單射浸入是一個嵌入;若M不是緊緻,則未必成立。這兩者的關係就如同連續雙射之於同胚。 參考
外部連結 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia