模方程
數學中的模方程(modular equation)是一個滿足模問題下模量(moduli)[1]定義的代数方程。給定一些在模空间中的函數,模方程是一些和這些函數的方程,或是一些在模量下成立的恆等式。 模方程最常見的用法,是指椭圆曲线的模量問題(moduli problem)。此處的模空间是一維的,若在模曲線函數域的任意兩個有理函數F及G,會滿足一個模方程P(F,G) = 0,P是二變數的非零複數多項式 。若選擇了適當的,非退化的F和G,可以用方程P(X,Y) = 0定義模曲線。 就算在最壞的情況下,P也是高階的多項式,其定義的平面曲線會存在奇点,多項式P的係數會是很大的數字。並且很難單純根據P的資訊,找到模量問題的尖點(也就是模曲線上,無法對應一般椭圆曲线,只對應退化型曲線的點)。 在此概念下,模方程(modular equation)會變成「模曲線的方程」(equation of a modular curve)。這類方程最早出現在橢圓函數乘法的理論中(幾何上,是從2-环面到自身的n2-fold覆蓋映射,是由其基礎群上的x → n·x映射所給定的),以複分析的形式來說明。 相關條目參考資料 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia