模型預測控制是以針對受控體模型的迭代式、有限時域滾動(finite-horizon)最佳化為基礎。在時間時針對受控體的狀態取樣,並且針對未來一段很短的滾動時域,計算使費用最小化的控制策略(數值最小化演算化)。特別會使用在線或是on the fly的計算來探索由目前狀態演進的狀態軌跡,並且(透過歐拉-拉格朗日方程)計算在時間之前的費用最小化策略。控制策略只會實現其中的第一步,之後會再取樣系統的狀態,再由新的狀態去計算新的控制策略,並且預測新的狀態路徑。預測的時間域會漸漸前進,因此模型預測控制也稱為滾動域控制(receding horizon control)。雖然此方法不一定是最佳化的,但在實務上有不錯的效果。有较多的學術研究致力於找到歐拉-拉格朗日形式方程的快速求解方式、找到MPC局部最佳解的全域穩定性,以提昇模型預測控制的效果。[6]
顯式模型預測控制(eMPC)允許對某些系統快速的評估其控制律,這一點和在線MPC有明顯的不同。顯式模型預測控制是以參數規劃(英语:parametric programming)技術為基礎,其中MPC控制問題的解(最佳化問題的目標)已在離線時先行計算[13]。離線計算的解(控制律)會以分段線性函數(英语:Piecewise linear function)(PWA)的形式表示,因此eMPC控制器會儲存在狀態空間中每一個子集(控制區間)內PWA的係數,並令在同一子集內的係數為定值,而所有的區間中的係數可以用某種參數化的方式來表示。若是線性模型預測控制。每個控制區間在幾何上會變成凸多胞形,一般會用其各個面的係數來參數化,因此需要量化精度分析[14]。因此求得最佳控制解的作法會簡化為先決定包括目前狀態的區間,再來是用所有區間內的PWA係數來計算PWA。若區間數量不多,eMPC的實現(相較於線上MPC)不會需要很大的計算量,也特別適合有快速動態特性的控制系統[15]。不過eMPC有一個嚴重的缺點,其運算量會隨區間總數以及控制系統的一些重要參數(例如狀態數量)呈指數增長,此時需要的記憶體會大幅增加,也讓PWA評估的第一部份(尋找目前的控制區間)需要很大的計算量。
^Michèle Arnold, Göran Andersson. "Model Predictive Control for energy storage including uncertain forecasts" 存档副本(PDF). [2013年5月17日]. (原始内容(PDF)存档于2013年10月14日).
^Tobias Geyer: Model predictive control of high power converters and industrial drives, Wiley, London, ISBN978-1-119-01090-6, Nov. 2016.
^Vichik, Sergey; Borrelli, Francesco. Solving linear and quadratic programs with an analog circuit. Computers & Chemical Engineering. 2014, 70: 160–171. doi:10.1016/j.compchemeng.2014.01.011.
^ 4.04.14.2Wang, Liuping. Model Predictive Control System Design and Implementation Using MATLAB®. Springer Science & Business Media. 2009: xii.
^Al-Gherwi, Walid; Budman, Hector; Elkamel, Ali. A robust distributed model predictive control based on a dual-mode approach. Computers and Chemical Engineering. 3 July 2012, 50 (2013): 130–138. doi:10.1016/j.compchemeng.2012.11.002.
^Michael Nikolaou, Model predictive controllers: A critical synthesis of theory and industrial needs, Advances in Chemical Engineering, Academic Press, 2001, Volume 26, Pages 131-204
^An excellent overview of the state of the art (in 2008) is given in the proceedings of the two large international workshops on NMPC, by Zheng and Allgower (2000) and by Findeisen, Allgöwer, and Biegler (2006).
^J.D. Hedengren; R. Asgharzadeh Shishavan; K.M. Powell; T.F. Edgar. Nonlinear modeling, estimation and predictive control in APMonitor. Computers & Chemical Engineering. 2014, 70 (5): 133–148. doi:10.1016/j.compchemeng.2014.04.013.
^Scokaert, P. O.; Mayne, D.Q. Min-max feedback model predictive control for constrained linear systems. IEEE Transactions on Automatic Control. 1998, 43 (8): 1136–1142. doi:10.1109/9.704989.
^Richards, A.; How, J. Robust stable model predictive control with constraint tightening. Proceedings of the American Control Conference. 2006.
^Langson, W.; I. Chryssochoos; S.V. Rakovic; D.Q. Mayne. Robust model predictive control using tubes. Automatica. 2004, 40 (1): 125–133. doi:10.1016/j.automatica.2003.08.009.
^Lucia, Sergio; Finkler, Tiago; Engell, Sebastian. Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty. Journal of Process Control. 2013, 23 (9): 1306–1319. doi:10.1016/j.jprocont.2013.08.008.
Kwon, W. H.; Bruckstein, Kailath. Stabilizing state feedback design via the moving horizon method. International Journal of Control. 1983, 37 (3): 631–643. doi:10.1080/00207178308932998.
Findeisen, Rolf; Allgower, Frank. An introduction to nonlinear model predictive control. Summerschool on "The Impact of Optimization in Control", Dutch Institute of Systems and Control. C.W. Scherer and J.M. Schumacher, editors. 2001: 3.1–3.45.
Mayne, D.Q.; Michalska. Receding horizon control of nonlinear systems. IEEE Transactions on Automatic Control. 1990, 35 (7): 814–824. doi:10.1109/9.57020.
Allgöwer; Zheng. Nonlinear model predictive control. Progress in Systems Theory 26. Birkhauser. 2000.
Camacho; Bordons. Model predictive control. Springer Verlag. 2004.
Findeisen; Allgöwer, Biegler. Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences 26. Springer. 2006.
Diehl, M; Bock; Schlöder; Findeisen; Nagy; Allgöwer. Real-time optimization and Nonlinear Model Predictive Control of Processes governed by differential-algebraic equations. Journal of Process Control. 2002, 12 (4): 577–585. doi:10.1016/S0959-1524(01)00023-3.
James B. Rawlings, David Q. Mayne and Moritz M. Diehl: ”Model Predictive Control: Theory, Computation, and Design”(2nd Ed.), Nob Hill Publishing, LLC, ISBN978-0975937730 (Oct. 2017).
Tobias Geyer: Model predictive control of high power converters and industrial drives, Wiley, London, ISBN978-1-119-01090-6, Nov. 2016
外部連結
Case Study. Lancaster Waste Water Treatment Works, optimisation by means of Model Predictive Control from Perceptive Engineering
ACADO Toolkit (页面存档备份,存于互联网档案馆) - Open Source Toolkit for Automatic Control and Dynamic Optimization providing linear and non-linear MPC tools. (C++, MATLAB interface available)
μAO-MPC (页面存档备份,存于互联网档案馆) - Open Source Software package that generates tailored code for model predictive controllers on embedded systems in highly portable C code.