上圖描繪了海王星外天體 的近日點 在海王星外(超過30 AU )的關係。此處,常規的海王星外天體(TNO)位於圖的左下角,極端海王星外天體(ETNO)的半長軸 大於150–250 AU。它們可以根據其近日點分為三個不同的族群[ 1] : 離散的 ETNOs或ESDOs (38–45 AU) 孤立的 ETNOs或EDDOs (40–45與50–60 AU) 類賽德娜天體 或內歐特雲天體(超過 50–60 AU)
極端海王星外天體 (ETNO ,extreme trans-Neptunian object)是在太陽系 最外層的海王星 (30AU )之外繞太陽運行,半長軸 至少為150–250 AU的海王星外天體 [ 1] [ 2] 。與所有其它已知的海王星外天體相比,極端海王星外天體的軌道受已知巨行星 的影響要小得多。然而,它們可能會受到與假想的第九行星 的引力相互作用的影響,將這些物體引導到同類型的類似軌道[ 1] 。已知的極端海王星外天體在具有較小升交點和降交點距離的天體對的分佈之間,表現出高度統計顯著的不對稱性,這可能表明受到外部擾動的響應[ 3] [ 4] 。
極端海王星外天體可分為三個不同的子群。離散盤 天體(或極端散射盤天體,ESDOs)的近日點 大約在38–45 AU和超過0.85的異常高偏心率 。與常規的離散盤天體一樣,它們很可能是由海王星引力散射 形成的,並且仍然與巨行星相互作用。孤立 海王星外天體(或極端分離圓盤天體,EDDO),近日點大約在40-45和50-60之間 AU受海王星的影響比離散盤天體的海王星外天體小,但仍然相對靠近海王星。類賽德娜天體 或希爾斯雲 天體,近日點超過 50–60 AU,離海王星太遠,不會受到它的強烈影響[ 1] 。
類賽德娜天體
The orbits of Sedna 、2012 VP113 、Leleākūhonua ,和其它非常遙遠的天體軌道,以及第九行星 的預測軌道[ A]
在極端的海王星外天體中,有類賽德娜天體 (英語:sednoids ),這四顆天體具有非常大的近日點 距離:賽德娜 、2012 VP113 、541132 Leleākūhonua 、和2021 RR205 。賽德娜和2012 VP113 是近日點大於70 AU的遠距離獨立天體 。它們的大近日點距離使它們保持足夠的距離,避免了來自海王星的顯著引力擾動 。以前對賽德娜大近日點距離的解釋包括:在遙遠的軌道上與未知行星 的近距離相遇,以及與隨機恆星或太陽誕生星團成員的遙遠相遇,該恆星或太陽誕生星團的成員在太陽系 附近經過[ 5] [ 6] [ 7] 。
離太陽最遠的天體
楚希羅和雪柏的發現
天文學家查德·楚希羅 和史考特·桑德·雪柏 發現的極端海王星外天體包括:
外太陽系起源調查
外太陽系起源調查 發現了更極端的海王星外天體,包括[ 13] :
自2016年初以來,又發現了10個極端海王星外天體,其軌道的近日點 大於30 AU 和半長軸大於 250;使非對齊天體總數達到16顆(完整清單見下表)。大多數海王星外天體(TNO)的近日點明顯超出海王星繞太陽運行的7012448793612100000♠ 30 AU[ 16] [ 17] 。一般來說,近日點小於7012538552334520000♠ 36 AU 的海王星外天體會與海王星發生強烈的相遇[ 18] [ 19] 。大多數海王星外天體相對較小,但因為它們在橢圓軌道上接近與太陽的最近距離,因此目前相對明亮。這些天體也包含在下面的軌道圖和表格中。
TESS數據搜索
Malena Rice和Gregory Laughlin應用了一種有針對性的移位堆疊搜索演算法分析來自TESS 扇區18和19的數據,尋找候選的太陽系外天體[ 20] 。他們的搜索恢復了像賽德娜這樣的已知海王星外天體,併產生了17個新的太陽系外天體候選者,這些天體位於80-200天文單位的地心距離範圍內,需要地面望遠鏡資源進行後續觀測才能確認。WHT 旨在恢復這些遙遠的海王星外天體的候選者,但未能確認其中兩個[ 21] [ 22] 。
清單
最極端的例子是2015 BP519 ,綽號「Caju」,它具有最高的傾角[ 23] ,和最遠的節點距離;這些屬性使其成為該群中可能的異常值[ 2] 。
註解
^ 三顆類賽德娜天體 (粉紅色)和紅色的極端海王星外天體(ETNO)軌道被懷疑與假設的第九行星 對齊,而藍色的ETNO軌道是反對齊的。被染成棕色的高度拉長的軌道包括半人馬小行星和達摩克型小行星 ,它們的遠日點距離超過200 AU.
參考資料
^ 1.0 1.1 1.2 1.3 Sheppard, Scott S.; Trujillo, Chadwick A.; Tholen, David J.; Kaib, Nathan. A New High Perihelion Trans-Plutonian Inner Oort Cloud Object: 2015 TG387. The Astronomical Journal. 2019, 157 (4): 139. Bibcode:2019AJ....157..139S . S2CID 119071596 . arXiv:1810.00013 . doi:10.3847/1538-3881/ab0895 .
^ 2.0 2.1 de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl. A Fruit of a Different Kind: 2015 BP519 as an Outlier among the Extreme Trans-Neptunian Objects. Research Notes of the AAS . 12 September 2018, 2 (3): 167. Bibcode:2018RNAAS...2..167D . S2CID 119433944 . arXiv:1809.02571 . doi:10.3847/2515-5172/aadfec .
^ de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl. Peculiar orbits and asymmetries in extreme trans-Neptunian space . Monthly Notices of the Royal Astronomical Society . 1 September 2021, 506 (1): 633–649 [2024-04-17 ] . Bibcode:2021MNRAS.506..633D . arXiv:2106.08369 . doi:10.1093/mnras/stab1756 . (原始内容存档 于2021-10-19).
^ de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl. Twisted extreme trans-Neptunian orbital parameter space: statistically significant asymmetries confirmed . Monthly Notices of the Royal Astronomical Society Letters. 1 May 2022, 512 (1): L6–L10 [2024-04-17 ] . Bibcode:2022MNRAS.512L...6D . arXiv:2202.01693 . doi:10.1093/mnrasl/slac012 . (原始内容存档 于2023-04-09).
^ Wall, Mike. A Conversation With Pluto's Killer: Q & A With Astronomer Mike Brown . Space.com . 24 August 2011 [7 February 2016] . (原始内容存档 于2016-02-02).
^ Brown, Michael E.; Trujillo, Chadwick; Rabinowitz, David. Discovery of a Candidate Inner Oort Cloud Planetoid. The Astrophysical Journal . 2004, 617 (1): 645–649. Bibcode:2004ApJ...617..645B . S2CID 7738201 . arXiv:astro-ph/0404456 . doi:10.1086/422095 .
^ Brown, Michael E. There's something out there – part 2 . Mike Brown's Planets. 28 October 2010 [18 July 2016] . (原始内容存档 于2016-07-31).
^ 8.0 8.1 Objects beyond Neptune provide fresh evidence for Planet Nine . 2016-10-25 [2024-04-17 ] . (原始内容存档 于2023-10-19). The new evidence leaves astronomer Scott Sheppard of the Carnegie Institution for Science in Washington, D.C., "probably 90% sure there's a planet out there." But others say the clues are sparse and unconvincing. "I give it about a 1% chance of turning out to be real," says astronomer JJ Kavelaars, of the Dominion Astrophysical Observatory in Victoria, Canada.
^ PLANET 9 SEARCH TURNING UP WEALTH OF NEW OBJECTS . 2016-08-30 [2024-04-17 ] . (原始内容存档 于2023-06-02).
^ Extreme New Objects Found At The Edge of The Solar System . [2024-04-17 ] . (原始内容存档 于2019-03-30).
^ The Search for Planet Nine: New Finds Boost Case for Distant World . Space.com . 29 August 2016 [2024-04-17 ] . (原始内容存档 于2023-10-17).
^ HUNT FOR NINTH PLANET REVEALS NEW EXTREMELY DISTANT SOLAR SYSTEM OBJECTS . 2016-08-29 [2024-04-17 ] . (原始内容存档 于2020-09-27).
^ Shankman, Cory; et al. OSSOS VI. Striking Biases in the detection of large semimajor axis Trans-Neptunian Objects . The Astronomical Journal. 2017, 154 (4): 50 [2024-04-17 ] . Bibcode:2017AJ....154...50S . S2CID 3535702 . arXiv:1706.05348 . doi:10.3847/1538-3881/aa7aed . hdl:10150/625487 . (原始内容存档 于2019-01-14).
^ SETI Institute . Exploring the outer Solar System: now in vivid colour - Michele Bannister (SETI Talks) . YouTube. 28:17. 18 March 2016 [18 July 2016] . (原始内容存档 于2022-09-28).
^ Bannister, Michele T.; et al. A new high-perihelion a ~700 AU object in the distant Solar System. American Astronomical Society, DPS Meeting #48, Id. 113.08. 2016, 48 : 113.08. Bibcode:2016DPS....4811308B .
^ Hand, Eric. Astronomers say a Neptune-sized planet lurks beyond Pluto . Science . 20 January 2016 [20 January 2016] . doi:10.1126/science.aae0237 . (原始内容存档 于2016-02-05).
^ Grush, Loren. Our solar system may have a ninth planet after all — but not all evidence is in (We still haven't seen it yet) . The Verge . 20 January 2016 [18 July 2016] . (原始内容存档 于2016-07-29). The statistics do sound promising, at first. The researchers say there's a 1 in 15,000 chance that the movements of these objects are coincidental and don't indicate a planetary presence at all. ... 'When we usually consider something as clinched and air tight, it usually has odds with a much lower probability of failure than what they have,' says Sara Seager, a planetary scientist at MIT. For a study to be a slam dunk, the odds of failure are usually 1 in 1,744,278 . ... But researchers often publish before they get the slam-dunk odds, in order to avoid getting scooped by a competing team, Seager says. Most outside experts agree that the researchers' models are strong. And Neptune was originally detected in a similar fashion — by researching observed anomalies in the movement of Uranus. Additionally, the idea of a large planet at such a distance from the Sun isn't actually that unlikely, according to Bruce Macintosh, a planetary scientist at Stanford University.
^ Batygin, Konstantin ; Brown, Michael E. Evidence for a distant giant planet in the Solar system. The Astronomical Journal . 2016, 151 (2): 22. Bibcode:2016AJ....151...22B . S2CID 2701020 . arXiv:1601.05438 . doi:10.3847/0004-6256/151/2/22 .
^ Koponyás, Barbara. Near-Earth asteroids and the Kozai mechanism (PDF) . 5th Austrian-Hungarian Workshop in Vienna. 10 April 2010 [18 July 2016] . (原始内容存档 (PDF) 于2016-03-14).
^ Rice, Malena; Laughlin, Gregory. Exploring Trans-Neptunian Space with TESS: A Targeted Shift-stacking Search for Planet Nine and Distant TNOs in the Galactic Plane. The Planetary Science Journal . December 2020, 1 (3): 81 (18 pp.). Bibcode:2020PSJ.....1...81R . S2CID 225075671 . arXiv:2010.13791 . doi:10.3847/PSJ/abc42c .
^ de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Vaduvescu, Ovidiu; Stanescu, Malin. Distant trans-Neptunian object candidates from NASA's TESS mission scrutinized: fainter than predicted or false positives? . Monthly Notices of the Royal Astronomical Society Letters . June 2022, 513 (1): L78–L82 [2024-04-17 ] . Bibcode:2022MNRAS.513L..78D . arXiv:2204.02230 . doi:10.1093/mnrasl/slac036 . (原始内容存档 于2023-04-08).
^ Distant Trans-Neptunian Object Candidates: Fainter Than Predicted or False Positives? . 20 May 2022 [2024-04-17 ] . (原始内容存档 于2022-05-20).
^ Becker, J. C.; et al. Discovery and Dynamical Analysis of an Extreme Trans-Neptunian Object with a High Orbital Inclination. The Astronomical Journal . 2018, 156 (2): 81. Bibcode:2018AJ....156...81B . S2CID 55163842 . arXiv:1805.05355 . doi:10.3847/1538-3881/aad042 .
外部連結