梅森旋转算法
梅森旋转演算法(Mersenne twister)是一个伪随机数发生算法。由松本眞和西村拓士[1]在1997年开发,基于有限二进制字段上的矩阵线性递归。可以快速产生高质量的伪随机数,修正了古典随机数发生算法的很多缺陷。 Mersenne Twister这个名字来自周期长度取自梅森質數的这样一个事实。这个算法通常使用两个相近的变体,不同之处在于使用了不同的梅森素数。一个更新的和更常用的是MT19937, 32位字长。还有一个变种是64位版的MT19937-64。对于一个k位的长度,Mersenne Twister会在的区间之间生成离散型均匀分布的随机数。 应用梅森旋转算法是R、Python、Ruby、IDL、Free Pascal、PHP、Maple、Matlab、GNU多重精度运算库和GSL的默认伪随机数产生器。从C++11开始,C++也可以使用这种算法。在Boost C++,Glib和NAG数值库中,作为插件提供。 在SPSS中,梅森旋转算法是两个PRNG中的一个:另一个是产生器仅仅为保证旧程序的兼容性,梅森旋转被描述为“更加可靠”。梅森旋转在SAS中同样是PRNG中的一个,另一个产生器是旧时的且已经被弃用。 优点最为广泛使用Mersenne Twister的一种变体是MT19937,可以产生32位整数序列。具有以下的优点:
缺点为了性能,这个算法付出了巨大的空间成本(当时而言):需要 2.5 KiB 的缓存空间。2011年,松本真和西村拓士针对这一问题提出了一个更小的版本,仅占127 bits的 TinyMT (Tiny Mersenne Twister)。[4] k-分布暂无 其他选择算法详细整个算法主要分为三个阶段: 第一阶段:获得基础的梅森旋转链; 第二阶段:对于旋转链进行旋转算法; 第三阶段:对于旋转算法所得的结果进行处理; 算法实现的过程中,参数的选取取决于梅森素数,故此得名。 相关代码下面的一段伪代码使用MT19937算法生成范围在[0, 232 − 1]的均匀分布的32位整数: 偽代碼//創建一個長度為624的數組來存儲發生器的狀態 int[0..623] MT int index = 0 //初始化產生器,種子作為首項內容 function initialize_generator(int seed) { i := 0 MT[0] := seed for i from 1 to 623 { // 走訪剩下的每個元素 MT[i] := last 32 bits of(1812433253 * (MT[i-1] xor (right shift by 30 bits(MT[i-1]))) + i) // 1812433253 == 0x6c078965 } } // Extract a tempered pseudorandom number based on the index-th value, // calling generate_numbers() every 624 numbers function extract_number() { if index == 0 { generate_numbers() } int y := MT[index] y := y xor (right shift by 11 bits(y)) y := y xor (left shift by 7 bits(y) and (2636928640)) // 2636928640 == 0x9d2c5680 y := y xor (left shift by 15 bits(y) and (4022730752)) // 4022730752 == 0xefc60000 y := y xor (right shift by 18 bits(y)) index := (index + 1) mod 624 return y } // Generate an array of 624 untempered numbers function generate_numbers() { for i from 0 to 623 { int y := (MT[i] & 0x80000000) // bit 31 (32nd bit) of MT[i] + (MT[(i+1) mod 624] & 0x7fffffff) // bits 0-30 (first 31 bits) of MT[...] MT[i] := MT[(i + 397) mod 624] xor (right shift by 1 bit(y)) if (y mod 2) != 0 { // y is odd MT[i] := MT[i] xor (2567483615) // 2567483615 == 0x9908b0df } } } Python 代码def _int32(x):
return int(0xFFFFFFFF & x)
class MT19937:
def __init__(self, seed):
self.mt = [0] * 624
self.mt[0] = seed
self.mti = 0
for i in range(1, 624):
self.mt[i] = _int32(1812433253 * (self.mt[i - 1] ^ self.mt[i - 1] >> 30) + i)
def extract_number(self):
if self.mti == 0:
self.twist()
y = self.mt[self.mti]
y = y ^ y >> 11
y = y ^ y << 7 & 2636928640
y = y ^ y << 15 & 4022730752
y = y ^ y >> 18
self.mti = (self.mti + 1) % 624
return _int32(y)
def twist(self):
for i in range(0, 624):
y = _int32((self.mt[i] & 0x80000000) + (self.mt[(i + 1) % 624] & 0x7fffffff))
self.mt[i] = (y >> 1) ^ self.mt[(i + 397) % 624]
if y % 2 != 0:
self.mt[i] = self.mt[i] ^ 0x9908b0df
调用函数 SFMT实现
参考列表
外部链接 |