柯里悖论
柯里悖论(英語:Curry's paradox)[1]是一种悖论,由美国数理逻辑学家哈斯凯尔·柯里提出,并且以其命名。它也與马丁·雨果·洛布的洛布定理有关,故也被称为洛布悖论。[2] 简介对于这样一个条件语句C:「若C,則F」,只需要一些显然无害的逻辑推导规则,就可以推导出:仅从句子C的存在就证明了任意主张F。由于F是任意的,因此遵循这些逻辑规则的任何逻辑系统都可以证明所有命题,这就引起矛盾(见:柯里悖论#自然语言论证),违反了经典逻辑的无矛盾律;因此,这是一个悖论。 当今哲学家所使用的“柯里悖论”一词,指的是一类多样化的悖论,具有自指性(self-reference)或循环性(circularity),并且其悖论根源的发现可追溯到柯里(1942)[3]和洛布(1955)[4]的贡献。 该悖论可以用自然语言和各种形式逻辑来表达,包括集合论、λ演算和组合子逻辑的某些形式。所有可以称为“柯里悖论”的悖论共同特征是,它们以连接词或谓词形式利用蕴涵,蕴含或结果的概念。[1] 分类弗兰克·普伦普顿·拉姆齐于1925年最早把逻辑悖论(Logical Paradox)同语义悖论(Semantical Paradox)区别开来。罗素悖论属于前一类,說謊者悖論属于后者。[5]拉姆齐认为,逻辑矛盾涉及数学或逻辑术语(例如类,数),因此表明存在逻辑问题。而语义矛盾除纯逻辑术语外还涉及“思想”,“语言”,“符号”等概念,它们是经验性(非形式)术语。语义矛盾也被称为认识论矛盾。该方法被认为是当前的标准的悖论分类方法。[6] 柯里悖论可以像罗素悖论一样,以集合论或属性论的悖论的形式出现(即逻辑悖论的形式);但是,它也可以是类似于说谎者悖论的语义悖论的形式出现。[1] 特性柯里悖论产生的根源和柯里悖论与罗素悖论和说谎者悖论类似,是违反了恶性循环原则[7],具有自指性。[8]但也与柯里悖论与罗素悖论和说谎者悖论有不同的特点,因为它本质上并没有涉及否定的概念。[1] 需要强调,因为柯里悖论并不在“本质上涉及否定”,它与罗素悖论和说谎者悖论有实质性不同。一些具有弱否定原理的非經典邏輯(如次协调逻辑),可以解决罗素悖论和说谎者悖论,但仍然容易受到柯里悖论的影响。 自然语言论证条件命题形式为:
证明条件命题(命题形式为:“如果A,那么B”)的标准方法称为“条件证明”。在该证明方法中,为了证明“如果A,则B”,首先假设A,然后在该假设下B被证明是正确的。 柯里悖论使用一种特殊的自指条件命题(self-referential conditional sentence),如以下示例所示: 按上面标准方法(条件证明),证明条件命题X时,首先假设X成立,由条件命题本身“如果X,则Y”,则“Y”成立;因此推导出,X成立。由于“Y”是任意的,也可以用任何其他命题代替,因此,仅使用公认的逻辑推理方法,每个命题似乎都是可以证明的。不但可以证明Y,亦可以证明¬Y,这种情况是自相矛盾的。 另一个例子如下: 尽管德国没有与中国接壤,但例句当然是自然语言的句子,因此可以分析该句子的真实性。悖论来自此分析,分析包括下面两个步骤:
“德国与中国接壤”的命题可以用任何其他命题F代替,并且该命题F仍然可以被证明。[1] 形式证明命题逻辑证明上一节中的示例使用了非形式化的自然语言推理。柯里悖论也出现在某些形式逻辑中。在这种情况下,它表明,如果我们假设存在一个形式句子(X → Y),其中X本身相当于(X → Y),那么我们可以用形式证明来证明Y。有关本节中使用的逻辑符号的说明,请参阅逻辑符号表。用命题逻辑的形式证明如下:
另一种证明是通过皮尔士定律。如果X = X → Y,则(X → Y) → X。根据皮尔士定律((X → Y) → X) → X和肯定前件规则,意味着X和随后的Y(如上面的证明)。 相关条目参考资料
|