最大后验概率
在贝叶斯统计学中,「最大后验概率估计」是后验概率分布的众数。利用最大后验概率估计可以获得对实验数据中无法直接观察到的量的点估计。它与最大似然估计中的经典方法有密切关系,但是它使用了一个增广的优化目标,进一步考虑了被估计量的先验概率分布。所以最大后验概率估计可以看作是规则化的最大似然估计。 假设我们需要根据观察数据 估计没有观察到的总体参数 ,让 作为 的采样分布,这样 就是总体参数为 时 的概率。函数 即为似然函数,其估计 就是 的最大似然估计。 假设 存在一个先验分布 ,这就允许我们将 作为 贝叶斯统计中的随机变量,这样 的后验分布就是: 其中 是 的domain,这是贝叶斯定理的直接应用。 最后验估计方法于是估计 为这个随机变量的后验分布的众数: 后验分布的分母与 无关,所以在优化过程中不起作用。注意当先验 是常数函数时最大后验估计与最大似然估计重合。 最大后验估计可以用以下几种方法计算:
尽管最大后验估计与贝叶斯统计共享先验分布的使用,通常并不认为它是一种贝叶斯方法,这是因为最大后验估计是点估计,然而贝叶斯方法的特点是使用这些分布来总结数据、得到推论。贝叶斯方法试图算出后验均值或者中值以及posterior interval,而不是后验模。尤其是当后验分布没有一个简单的解析形式的时候更是这样:在这种情况下,后验分布可以使用 Markov chain Monte Carlo 技术来模拟,但是找到它的模的优化是很困难或者是不可能的。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia