在數學的分支領域數論中,拉馬努金和(英語:Ramanujan's sum)常標示為,為一個帶有兩正整數變數以及的函數,其定義如下:
其中表示只能是與互質的數。
斯里尼瓦瑟·拉馬努金於1918年的一篇論文中引入這項和的觀念。[1]拉馬努金和也用在維諾格拉多夫定理的證明,此定理指出:任何足夠大的奇數可為三個質數的和。[2]
本文符號彙整
若整數a與b,有關係(唸作「a整除b」),表示存在一個整數c使得b = ac;相似地,表示「a無法整除b」。
求和符號
表示d只採用其正整數因數m,亦即
- 。
另外用到的有:
- 為最大公因數,
- 為歐拉總計函數,
- 為莫比烏斯函數,以及
- 為黎曼ζ函數。
cq(n)的數學式
三角函數
下面的式子源自於定義、歐拉公式以及基本三角函數恆等式:
等等(A000012, A033999, A099837, A176742,.., A100051, ...)。這些式子顯示出cq(n)為實數。
拉馬努金展開式
參考文獻
- ^ Ramanujan, On Certain Trigonometric Sums ...
These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new. (Papers, p. 179). In a footnote cites pp. 360–370 of the Dirichlet-Dedekind Vorlesungen über Zahlentheorie, 4th ed.
- ^ Nathanson, ch. 8
書目
- Hardy, G. H., Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, Providence RI: AMS / Chelsea, 1999, ISBN 978-0-8218-2023-0
- Nathanson, Melvyn B., Additive Number Theory: the Classical Bases, Graduate Texts in Mathematics 164, Springer-Verlag, Section A.7, 1996, ISBN 0-387-94656-X, Zbl 0859.11002 .
- Nicol, C. A. Some formulas involving Ramanujan sums. Canad. J. Math. 1962, 14: 284–286. doi:10.4153/CJM-1962-019-8.
- Ramanujan, Srinivasa, On Certain Trigonometric Sums and their Applications in the Theory of Numbers, Transactions of the Cambridge Philosophical Society, 1918, 22 (15): 259–276 (pp. 179–199 of his Collected Papers)
- Ramanujan, Srinivasa, On Certain Arithmetical Functions, Transactions of the Cambridge Philosophical Society, 1916, 22 (9): 159–184 (pp. 136–163 of his Collected Papers)
- Schwarz, Wolfgang; Spilker, Jürgen, Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties, London Mathematical Society Lecture Note Series 184, Cambridge University Press, 1994, ISBN 0-521-42725-8, Zbl 0807.11001
|