威尔逊定理
威尔逊定理是以英格兰数学家爱德华·华林的学生约翰·威尔逊命名的,尽管这对师生都未能给出证明。华林于1770年提出该定理,1771年由拉格朗日首次证明[1]。 在初等数论中,威尔逊定理给出了判定一个自然数是否为質數的充分必要条件。即:当且仅当为質數时: 证明充分性如果 不是質數,那么它的正因数必然包含在整数 中,因此 ,所以不可能得到 。 必要性若是質數,取集合 , 则构成模乘法的缩系,即任意 ,存在 ,使得: 這幾乎說明中的元素恰好两两配对。僅有滿足 的元素是例外。 上式解得 或 其余两两配对,故而 若不是質數且大于4, 则易知有 故而 推論可以藉此推論如下: 參考文獻
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia