多项式时间近似算法在计算机科学领域,多项式时间近似算法(PTAS)是一种用于优化问题(最常见的是NP-hard优化问题)的近似算法。 PTAS使用一个大于0的参数 ε,产生一个对于最小化问题能在 1 + ε 倍最优解内的解决方案(或最大化问题的 1 − ε 倍)。例如,对于欧几里得旅行商问题,现有的最好PTAS 将产生一个长度最多为 (1 + ε) L 的解,其中L是最短行程的长度。 [1] ε的大小越小,PTAS的近似性能比越靠近1,也即说明这个PTAS的计算结果越接近最优解。 对于一个固定大小的ε,PTAS 的运行时间必须是(对于问题大小)多项式的(例如对于一个原时间复杂度为O(2^n)的算法,它的PTAS时间复杂度可以为O(n4*2k),其中k为参数),但对于不同的 ε,可以是不同的。时间复杂度为O(n1/ε) 甚至O(nexp(1/ε)) 的算法同样属于 PTAS。 参考
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia