塔斯基分割圓問題
1925年,阿爾弗雷德·塔斯基提出一個問題:將平面上的一個圆分割成有限多塊,然後重新拼合成面積相同的正方形。 1990年米可斯·拉茲柯維奇證明這是可行的。但他的分割方法大量使用了選擇公理(axiom of choice),故该方法是不可构造的。这种分割方法至多將圓分割成約1050塊。2017年,Andrew Marks 和 Spencer Unger 使用博雷尔片给出了一个完全构造性的分割方法。[1] 拉茲柯維奇還證明了更多:該重新拼合的過程中只須移動即可;旋轉並非必要。他隨之而證明任何平面上的單純多邊形均可分割成有限多片,只須移動來重新拼合一個面積相同的正方形。華勒斯·波埃伊·格維也納定理是相關但簡單得多的結果——若可以在重新拼合過程中移動和旋轉,一個多邊形割為有限多的多邊形塊後,可重新拼合成另一個面積相同的多邊形。 這些結果可以和在三維上的巴拿赫-塔斯基悖论(Hausdorff-Banach-Tarski paradox)相比;這些分割甚至改變集的體積,而平面上的問題則不能做到。 它跟化圓為方問題是不同的:使用尺規作圖的方法令圓形的面積變成正方形的面積,這是不可能的。塔斯基的問題使用了(不可證的)選擇公理來分割圓令成為一塊塊數目多至不可测集的片,所以它不能用實質工具這種只能畫出可量度集的物件顯示出來。 參考
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia