可预测过程可预测过程是数学中随机过程里的一个概念。如果一个随机过程在某个时刻的取值在这个时刻之前就可能可以知道(可测),那么就称这个过程是可预测过程。 定义设有 当指标集是(可数的)离散集合,比如时,是可预测过程当且仅当对任意的,都是-可测的随机变量[1]:190。通俗地说,只要完全掌握了这个随机过程在时刻的所有信息,那么时的取值就是确定的[2]:§8.2。 当指标集是(不可数的)连续集合,比如时,是可预测过程当且仅当对任意的,都是-可测的随机变量。其中的参考族[2]:§8.2。换句话说,如果知道了随机过程这个随机过程在时刻之前任意时刻的取值,那么几乎必然有,也就是说随机过程在一个特定时刻的取值是之前的取值的极限。另一种等价的定义方式是先定义可预测的σ-代数。给定了参考族后,可以定义上的-可预测σ-代数:它是由所有的左连续并且对每个都可测的过程生成的σ-代数。而一个随机过程是可预测的,当且仅当作为上的随机变量是-可测的[1]:226[3]:171-172。 性质
Doob-Meyer分解可预测过程可以用在分解半鞅过程上。Doob-Meyer分解定理说明,设是一个(局部)下鞅,那么存在唯一的(局部)鞅和单增的局部可积的可预测过程,使得
举例来说,设 是一个标准布朗运动过程,那么过程 就是一个下鞅,对应的分解是和[2]:§8.3. 参见参考来源
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia