博雷尔-卡拉西奥多里定理
在复分析中,博雷尔-卡拉西奥多里定理(Borel-Carathéodory theorem)表明解析函数有一个用实部表示的上界。它是最大模原理的一个应用,以埃米尔·博雷尔与康斯坦丁·卡拉西奥多里命名。 定理陈述设函数在以原点为圆心以为半径的闭圆盘上解析。假设,则有以下不等式:
其中左边的范数是在闭圆盘上的最大值:
证明定义。 首先设。由于是调和的,可以取。映到直线左边的半平面。我们想把这个半平面映到圆盘上,再用施瓦茨引理,得到所要的不等式。 把变成标准左半平面。把左半平面变成圆心在原点且半径为的圆。它们的复合映射把0映成0,就是所需要的映射:
对上面这个映射与的复合使用施瓦茨引理,得到
取,上式变为
所以
对于一般的情况,考虑
整理后即得所要证明的不等式。 参考资料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia