全狀態回授全狀態回授(Full state feedback)也稱為極點安置(pole placement),是反馈控制系統理論中的一種控制方式,規劃受控體的閉迴路極點在S平面中事先定義的位置上[1]。在規劃控制系統時,會希望可以規劃極點的位置,因為極點位置直接對應系統的特征值,而特征值直接影響系統的反應特性。若要用此方法控制,系統必須有可控制性。在多輸入及多輸出的系統中常用此方式控制,例如主動懸架系統[2]。 原理而其輸出方程式為 則系統轉移函數的極點也就是以下特徵方程的根 全狀態回授是利用輸入向量來達成。考慮一輸入可以表示為一矩陣和狀態向量的乘積,
將輸入向量替換到原來的狀態方程: 全狀態回授系統的極點是矩陣特徵方程的根,。比較方程式的項以及理想特徵方程的係數,可以得到回授矩陣的值,也就是讓閉迴路特徵值在理想特徵方程極點上的對應矩陣。 全狀態回授的例子考慮狀態方程如下的控制系統 控制前的系統其閉迴路極點在及。假設為了響應的考量,需讓閉迴路極點在及。理想特徵方程為。 依上述步驟,可得,而全狀態回授的系統特徵方程為
讓此特徵方程等於理想特徵方程,因此可得
因此,可以使閉迴路極點在理想位置上,讓響應也是理想值。 此作法只在單一輸入的系統有效。多重輸入的系統也會有K矩陣,但不唯一。因此不一定可以很快找到最佳的K值。此情形比較適合使用LQR控制器。 相關條目參考資料
外部連結 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia