上同调环代数拓扑中,拓扑空间X 的上同调环是由X的上同调群与上积组成的环。此处,“上同调”指奇异上同调,不过环结构也存在于德拉姆上同调等其他理论中。它也是函子式的:对于空间中的连续映射,可在上同调环上得到反变(contravariant)的环同态。 具体来说,给定X上的上同调群序列,其系数在交换环R(一般是Zn、Z、 Q、R、C)中,就可以定义上积: 上积给出了上同调群 的直和的乘法,将变成了环。实际上,它自然是一个N次环,非负整数k为次数。上积保持分次不变。 上同调环是分次交换的,即上积与由分次定义的符号交换。具体地,对度为k、ℓ的纯元素,有 上同调环衍生出的一个数值不变量是上积长(cup-length),即度数≥ 1、积不为零的分次元素的最大数目。例如,复射影空间的上积长等于其复维度。 例子
另见参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia