上下文有关语言在理论计算机科学中,上下文有关语言是可被上下文有关文法定义的形式语言。它是乔姆斯基谱系中的四类文法之一。它在理论和实践中都是最少使用的。 计算性质上下文有关语言的可计算性等价于线性有界非确定图灵机。它是磁带只有 kn 个单元的非确定图灵机,这里的 n 是输入的大小而 k 是与这个机器关联的常数。这意味着可以被这种机器判定的所有形式语言都是上下文有关语言,而所有上下文有关语言都可以被这种机器判定。 这种语言的集合也叫做 NLIN-SPACE,因为它们可以在非确定图灵机上使用线性空间来接受。类 LIN-SPACE 定义相同,除了使用确定图灵机之外。明显的 LIN-SPACE 是 NLIN-SPACE 的子集,但不知道是否 LIN-SPACE=NLIN-SPACE。普遍猜测它们是不相等的。 例子不是上下文無關的上下文有關語言的一個例子是 L = { ap : p 是質數 }。證明它的最容易方式是使用線性有界圖靈機。 上下文有关语言的性质
参见引用
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia