Hàm số khả viTrong vi phân và tích phân (một phân nhánh của toán học), một hàm số khả vi của một biến số thực là một hàm có đạo hàm tại tất cả các điểm thuộc miền xác định của nó. Hệ quả là đồ thị của một hàm số khả vi có một tiếp tuyến không song song với trục y tại từng điểm trong miền xác định của nó; hàm số có đồ thị trơn, không chứa bất kỳ đứt gãy hoặc bẻ gập nào. Nói chung, nếu x0 là một điểm thuộc miền xác định của hàm số f, khi đó f là khả vi tại x0 nếu đạo hàm f ′(x0) tồn tại. Điều này có nghĩa là đồ thị của f có một tiếp tuyến không thẳng đứng tại điểm (x0, f(x0)). Hàm số f cũng được gọi là tuyến tính cục bộ tại x0, vì nó có thể được biểu diễn xấp xỉ bằng một hàm số tuyến tính gần điểm nói trên. Tham khảo |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia