Định lý Lagrange (lý thuyết nhóm)
Trong lý thuyết nhóm, định lý Lagrange phát biểu rằng: nếu H là nhóm con của nhóm hữu hạn G, thì cấp (số phần tử) của G chia hết cho cấp của H. Định lý này được đặt theo tên của nhà toán học người Pháp Joseph Lagrange. Chứng minhTrong chứng minh sử dụng khái niệm lớp bên trái của nhóm H trong G. Nhắc lại: 2 phần tử a và b của G nằm ở cùng một lớp của H trong G nếu tồn tại phần tử sao cho a = bh, ký hiệu một lớp là aH với a là một phần tử bất kì trong lớp đó, tập tất cả các lớp ký hiệu là G/H. Dễ dàng chứng minh được 2 lớp bất kỳ sẽ không giao nhau và H cũng chính là một lớp. Gọi aH và bH là 2 lớp bất kì của H trong G ta có thể định nghĩa một ánh xạ bằng cách đặt . Đây là một song ánh vì nó có nghịch đảo Như vậy số phần tử của các lớp của H là bằng nhau và bằng cấp của H. Ký hiệu [G:H] là số các lớp của H (còn gọi là chỉ số của H) Hệ quảGọi G là nhóm hữu hạn, a là một phần tử của nhóm G.
Sử dụng
Lịch sửLagrange không chứng minh định lý trên. Ông chỉ chứng minh mệnh đề sau: số các đa thức n biến khác nhau, nhận được bằng cách hoán đổi vị trí các biến từ một đa thức cho trước, luôn là ước số của n!. (n! = 1.2.3...n là số các hoán vị n phần tử). Sau này mệnh đề của Lagrange về số các đa thức được tổng quát trên nhóm và được phát biểu thành định lý mà ngày nay mang tên ông. Xem thêmTham khảo
|
Portal di Ensiklopedia Dunia