SMC білки є представниками великої родини АТФаз, які беруть участь у регулюванні структури та динаміки хромосом.[1][2][3] Абревіатура SMC походить від англ.Structural Maintenance of Chromosomes, тобто структурна підтримка хромосом.
Класифікація
Еукаріотичні SMC
Еукаріоти мають як мінімум шість типів SMC білків у кожному окремому організмі; вони утворюють три типи гетеродимерів, які виконують такі функції:
Гетеродимер SMC2 та SMC4 є основою конденсину, білкового комплексу, завдяки якому відбувається конденсація хроматину.[7][8]
Гетеродимер білків SMC5 та SMC6 бере участь у репарації ДНК та контролі проходження контрольних точок.[9]
Окрім SMC білків, кожен із згаданих вище комплексів має певну кількість регуляторних білкових субодиниць. В деяких організмах ідентифіковані варіації SMC білків. Наприклад, ссавці мають мейоз-специфічний версію SMC1, названу SMC1β.[10] Нематода Caenorhabditis elegans має спеціальну версію SMC4, яка відіграє певну роль у дозовій компенсації.[11]
SMC білки є висококонсервативними від бактерій до людини. Більшість бактерій мають один SMC білок який функціонує у вигляді гомодимеру.[12] В підгрупі грам-негативних бактерій, включаючи Escherichia coli, структурно-подібний білок MukB відіграє аналогічну роль.[13]
SMC димер утворює V-подібну структуру із двома довгими біспіральними плечами.[14][15] На кінці молекули, N-термінальний та C-термінальний фрагменти разом утворюють АТФ-звязуючий домен. Інший кінець молекули називається «шарнірною ділянкою». Два окремі SMC білка димеризуються своїми шарнірними ділянками, в результаті чого і утворюється V-подібний димер.[16][17] Довжина кожного біспірального плеча ~50 нм. Такі довгі «антипаралельні» двоспіральні структури є унікальними, і знайдені тільки в SMC білках (та їх гомологах таких як Rad50). АТФ-звязуючий домен SMC білків є структурно подібний до аналогічного домену ABC транспортерів, великої родини трансмембранних білків які спеціалізуються на транспорті низькомолекулярних сполук через мембрани.
↑Losada A, Hirano T (2005). Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev. Т. 19, № 11. с. 1269—1287. doi:10.1101/gad.1320505. PMID15937217.
↑Huang CE, Milutinovich M, Koshland D (2005). Rings, bracelet or snaps: fashionable alternatives for Smc complexes. Philos Trans R Soc Lond B Biol Sci. Т. 360, № 1455. с. 537—42. doi:10.1098/rstb.2004.1609. PMC1569475. PMID15897179.
↑Michaelis C, Ciosk R, Nasmyth K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. Т. 91, № 1. с. 35—45. doi:10.1016/S0092-8674(01)80007-6. PMID9335333.
↑Guacci V, Koshland D, Strunnikov A. (1998). A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell. Т. 91, № 1. с. 47—57. doi:10.1016/S0092-8674(01)80008-8. PMC2670185. PMID9335334.
↑Losada A, Hirano M, Hirano T. (1998). Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. Т. 12, № 13. с. 1986—1997. doi:10.1101/gad.12.13.1986. PMID9649503.
↑Hirano T, Kobayashi R, Hirano M. (1997). Condensins, chromosome condensation complex containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell. Т. 89, № 4. с. 511—21. doi:10.1016/S0092-8674(00)80233-0. PMID9160743.
↑Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T. (2003). Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell. Т. 115, № 1. с. 109—21. doi:10.1016/S0092-8674(03)00724-4. PMID14532007.
↑Fousteri MI, Lehmann AR. (2000). A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. Т. 19, № 7. с. 1691—1702. doi:10.1093/emboj/19.7.1691. PMID10747036.
↑Chuang PT, Albertson DG, Meyer BJ. (1994). DPY-27:a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell. Т. 79, № 3. с. 459—474. doi:10.1016/0092-8674(94)90255-0. PMID7954812.
↑Britton RA, Lin DC, Grossman AD. (1998). Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev. Т. 12, № 9. с. 1254—1259. doi:10.1101/gad.12.9.1254. PMID9573042.
↑Melby TE, Ciampaglio CN, Briscoe G, Erickson HP. (1998). The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J. Cell Biol. Т. 142, № 6. с. 1595—1604. doi:10.1083/jcb.142.6.1595. PMID9744887.
↑Anderson DE, Losada A, Erickson HP, Hirano T. (2002). Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. Т. 156, № 6. с. 419—424. doi:10.1083/jcb.200111002. PMID11815634.
↑Haering CH, Löwe J, Hochwagen A, Nasmyth K. (2002). Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell. Т. 9, № 4. с. 773—788. doi:10.1016/S1097-2765(02)00515-4. PMID11983169.
↑Hirano M, Hirano T. (2002). Hinge-mediated dimerization of SMC protein is essential for its dynamic interaction with DNA. EMBO J. Т. 21, № 21. с. 5733—5744. doi:10.1093/emboj/cdf575. PMID12411491.